Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries

被引:1201
作者
Zhu, Xianjun [1 ,2 ,3 ]
Zhu, Yanwu [1 ,2 ]
Murali, Shanthi [1 ,2 ]
Stollers, Meryl D. [1 ,2 ]
Ruoff, Rodney S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Cent China Normal Univ, Coll Chem, Wuhan 430079, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
reduced graphene oxide; Fe2O3; anode; lithium ion battery; homogeneous coprecipitation; IRREVERSIBLE CAPACITIES; ALPHA-FE2O3; ELECTRODES; REDUCTION; NANOTUBES; INSERTION; HYBRID;
D O I
10.1021/nn200493r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reduced graphene oxide/Fe2O3 composite was prepared using a facile two-step synthesis by homogeneous coprecipitation and subsequent reduction of the G-O with hydrazine under microwave irradiation to yield reduced graphene oxide (RG-O) platelets decorated with Fe2O3 nanoparticles. As an anode material for Li-ion batteries, the RG-O/Fe2O3 composite exhibited discharge and charge capacities of 1693 and 1227 mAh/g, respectively, normalized to the mass of Fe2O3 In the composite (and 1355 and 982 mAh/g, respectively, based on the total mass of the composite), with good cycling performance and rate capability. Characterization shows that the Fe2O3 nanoparticles are uniformly distributed on the surface of the RG-O platelet in the composite. The total specific capacity of RG-O/Fe2O3 is higher than the sum of pure RG-O and nanoparticle Fe2O3, indicating a positive synergistic effect of RG-O and Fe2O3 on the improvement of electrochemical performance. The synthesis approach presents a promising route for a large-scale production of RG-O platelet/metal oxide nanoparticle composites as electrode materials for Li-ion batteries.
引用
收藏
页码:3333 / 3338
页数:6
相关论文
共 28 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[3]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[4]   Layered vanadium and molybdenum oxides: batteries and electrochromics [J].
Chernova, Natasha A. ;
Roppolo, Megan ;
Dillon, Anne C. ;
Whittingham, M. Stanley .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (17) :2526-2552
[5]   Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:: A highly efficient material for Li-battery applications [J].
Du, Ning ;
Zhang, Hui ;
Chen, Bindi ;
Wu, Jianbo ;
Ma, Xiangyang ;
Liu, Zhihong ;
Zhang, Yiqiang ;
Yang, Deren ;
Huang, Xiaohua ;
Tu, Jiangping .
ADVANCED MATERIALS, 2007, 19 (24) :4505-+
[6]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[7]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[8]   Self-Propagating Domino-like Reactions in Oxidized Graphite [J].
Kim, Franklin ;
Luo, Jiayan ;
Cruz-Silva, Rodolfo ;
Cote, Laura J. ;
Sohn, Kwonnam ;
Huang, Jiaxing .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (17) :2867-2873
[9]   Combined XRD, EXAFS, and Mossbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes [J].
Larcher, D ;
Bonnin, D ;
Cortes, R ;
Rivals, I ;
Personnaz, L ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1643-A1650
[10]   Effect of particle size on lithium intercalation into α-Fe2O3 [J].
Larcher, D ;
Masquelier, C ;
Bonnin, D ;
Chabre, Y ;
Masson, V ;
Leriche, JB ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (01) :A133-A139