Noncommutative gravitational quantum well -: art. no. 025010

被引:245
作者
Bertolami, O
Rosa, JG
de Aragao, CML
Castorina, P
Zappalà, D
机构
[1] Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal
[2] Univ Catania, Dept Phys, Catania, Italy
[3] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy
来源
PHYSICAL REVIEW D | 2005年 / 72卷 / 02期
关键词
D O I
10.1103/PhysRevD.72.025010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study noncommutative geometry at the quantum mechanics level by means of a model where noncommutativity of both configuration and momentum spaces is considered. We analyze how this model affects the problem of the two-dimensional gravitational quantum well and use the latest experimental results for the two lowest energy states of neutrons in the Earth's gravitational field to establish an upper bound on the fundamental momentum scale introduced by noncommutativity, namely, root eta less than or similar to 1 meV/c, a value that can be improved in the future by up to 3 orders of magnitude. We show that the configuration space noncommutativity has, in leading order, no effect on the problem. We also analyze some features introduced by the model, especially a correction to the presently accepted value of Planck's constant to 1 part in 10(24).
引用
收藏
页码:1 / 9
页数:9
相关论文
共 27 条
[1]   Hopf-algebra description of noncommutative-space-time symmetries [J].
Agostini, A ;
Amelino-Camelia, G ;
D'Andrea, F .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (30) :5187-5219
[2]  
Bertolami O, 2003, J HIGH ENERGY PHYS
[3]   Noncommutative scalar field coupled to gravity [J].
Bertolami, O ;
Guisado, L .
PHYSICAL REVIEW D, 2003, 67 (02)
[4]   Ultracold neutrons, quantum effects of gravity and the weak equivalence principle [J].
Bertolami, O ;
Nunes, FM .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (05) :L61-L66
[5]   Noncommutative field theory and Lorentz violation [J].
Carroll, SM ;
Harvey, JA ;
Kostelecky, VA ;
Lane, CD ;
Okamoto, T .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :141601/1-141601/4
[6]  
Connes A, 1998, J HIGH ENERGY PHYS
[7]  
Demetrian M, 2002, ACTA PHYS SLOVACA, V52, P1
[8]   On quantum mechanics on noncommutative quantum phase space [J].
Djemaï, AEF ;
Smail, H .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) :837-844
[9]  
Douglas MR, 1998, J HIGH ENERGY PHYS
[10]   Noncommutative quantum mechanics [J].
Gamboa, J ;
Loewe, M ;
Rojas, JC .
PHYSICAL REVIEW D, 2001, 64 (06)