Partial-body exposure of human volunteers to 2450 MHz pulsed or CW fields provokes similar thermoregulatory responses

被引:25
作者
Adair, ER
Mylacraine, KS
Cobb, BL
机构
[1] USAF, HEDR, Res Lab, Brooks AFB, TX 78235 USA
[2] Veridian Inc, Brooks AFB, TX USA
关键词
thermoregulation; metabolic rate; sweating; skin blood flow; body temperature; microwaves;
D O I
10.1002/bem.47
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many reports describe data showing that continuous wave (CW) and pulsed (PW) radiofrequency (RF) fields, at the same frequency and average power density (PD), yield similar response changes in the exposed organism. During whole-body exposure of squirrel monkeys at 2450 MHz CW and PW fields, heat production and heat loss responses were nearly identical. To explore this question in humans, we exposed two different groups of volunteers to 2450 MHz CW (two females, five males) and PW (65 mus pulse width, 10(4) pps; three females, three males) RF fields. We measured thermophysiological responses of heat production and heat loss (esophageal and six skin temperatures, metabolic heat production, local skin blood flow, and local sweat rate) under a standardized protocol (30 min baseline, 45 min RF or sham exposure, 10 min baseline), conducted in three ambient temperatures (T-a = 24, 28, and 31 degreesC). At each T-a, average PDs studied were 0, 27, and 35 mW/cm(2) (Specific absorption rate (SAR) = 0, 5.94, and 7.7 W/kg). Mean data fur each group showed minimal changes in core temperature and metabolic heat production for all test conditions and no reliable differences between CW and PW exposure. Local skin temperatures showed similar trends for CW and PW exposure that were PD-dependent; only the skin temperature of the upper back (facing the antenna) showed a reliably greater increase (P = .005) during PW exposure than during CW exposure. Local sweat rate and skin blood flow were both T-a- and PD-dependent and showed greater variability than other measures between CW and PW exposures; this variability was attributable primarily to the characteristics of the two subject groups. With one noted exception, no clear evidence for a differential response to CW and PW fields was found. (C) 2001 Wiley-Liss,Inc.
引用
收藏
页码:246 / 259
页数:14
相关论文
共 45 条
[1]  
Adair Eleanor R., 1996, P403
[2]  
Adair ER, 1999, BIOELECTROMAGNETICS, P12, DOI 10.1002/(SICI)1521-186X(1999)20:4+<12::AID-BEM4>3.0.CO
[3]  
2-N
[4]  
ADAIR ER, 1995, NATO ADV SCI INST SE, V274, P245
[5]  
Adair ER, 1999, ELECTRICITY AND MAGNETISM IN BIOLOGY AND MEDICINE, P613
[6]  
Adair ER, 1998, BIOELECTROMAGNETICS, V19, P232, DOI 10.1002/(SICI)1521-186X(1998)19:4<232::AID-BEM5>3.0.CO
[7]  
2-2
[8]  
Chou CK, 1996, BIOELECTROMAGNETICS, V17, P195, DOI 10.1002/(SICI)1521-186X(1996)17:3<195::AID-BEM5>3.0.CO
[9]  
2-Z
[10]   AUDITORY-PERCEPTION OF RADIO-FREQUENCY ELECTROMAGNETIC-FIELDS [J].
CHOU, CK ;
GUY, AW ;
GALAMBOS, R .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1982, 71 (06) :1321-1334