Pressure-induced stabilization of ordered paranatrolite: A new insight into the paranatrolite controversy

被引:46
作者
Lee, Y [1 ]
Hriljac, JA
Parise, JB
Vogt, T
机构
[1] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA
[2] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[3] Univ Birmingham, Sch Chem, Birmingham B15 2TT, W Midlands, England
[4] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
关键词
D O I
10.2138/am.2005.1588
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The origin and stability of paranatrolite (approximate formula Na16-xCaxAl16+xSi24-xO80.24H(2)O), a naturally occurring zeolite with the natrolite topology, has long been debated, with its detailed structure unknown. When taken from an aqueous environment and exposed to the atmosphere, paranatrolite is reported to irreversibly lose water and transform to gonnardite/tetranatrolite, Na16-xCaxAl16+xSi24-xO80.nH(2)O. Since the latter has a disordered Al/Si distribution over the framework tetrahedral sites, it is believed the same is true for paranatrolite. Natrolite itself (Na16Al16Si24O80.16H(2)O) has Al/Si ordering, and as recently shown, undergoes a reversible volume expansion (similar to2.5%) due to pressure-induced hydration (PIH) above 1.2 GPa to a superhydrated phase (Na16Al16Si24O80.32H(2)O). During this process, an intermediate phase with an even larger volume expansion of similar to7.0% has been detected in a narrow pressure range near 1.0 GPa. We report here that this intermediate phase has a unit-cell compatible with the one reported for paranatrolite at ambient conditions with the same 24 water molecules per formula unit and propose that it is paranatrolite with an ordered Al/Si distribution. An unusual water-sodium chain is observed in the ordered paranatrolite structure: a sevenfold coordination of sodium cations provided by alternating two water bridges along the expanded elliptical channels. The density of the ordered paranatrolite is lower than those of the 16 and 32 water phases, with its channel openings far more circular than in the low- and high-pressure analogs. The atomistic details of the ordered paranatrolite provide a structural model for the naturally occurring paranatrolite and a complete understanding of this intriguing pressure-volume-hydration mechanism in natrolite, demonstrating the unique role of pressure in controlling the chemistry of microporous materials.
引用
收藏
页码:252 / 257
页数:6
相关论文
共 26 条
[1]  
Artioli G, 1999, AM MINERAL, V84, P1445
[2]  
ARTIOLI G, 1986, ACTA CRYSTALLOGR C, V42, P937, DOI 10.1107/S0108270186093939
[3]   ON CRYSTAL CHEMISTRY OF SALT HYDRATES .6. CRYSTAL STRUCTURES OF DISODIUM HYDROGEN ORTHOARSENATE HEPTAHYDRATE AND OF DISODIUM HYDROGEN ORTHOPHOSPHATE HEPTAHYDRATE [J].
BAUR, WH ;
KHAN, AA .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1970, B 26 (OCT15) :1584-+
[4]  
BAUR WH, 1990, EUR J MINERAL, V2, P761
[5]   CONCERNING THE CRYSTAL-STRUCTURE REFINEMENT OF PARANATROLITE PUBLISHED BY PECHAR,F. [J].
BAUR, WH .
CRYSTAL RESEARCH AND TECHNOLOGY, 1991, 26 (07) :K169-K171
[6]   STRUCTURAL TRANSFORMATIONS IN NATROLITE AND EDINGTONITE [J].
BELITSKY, IA ;
FURSENKO, BA ;
GABUDA, SP ;
KHOLDEEV, OV ;
SERYOTKIN, YV .
PHYSICS AND CHEMISTRY OF MINERALS, 1992, 18 (08) :497-505
[7]  
Chao G. Y., 1980, CANAD MINERAL 1, V18, P85
[8]   STRUCTURE OF WATER DIMER FROM MOLECULAR-BEAM ELECTRIC RESONANCE SPECTROSCOPY [J].
DYKE, TR ;
MACK, KM ;
MUENTER, JS .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (02) :498-510
[9]  
Evans HT, 2000, AM MINERAL, V85, P1808
[10]   Anomalous mobility of molecules, structure of the guest sublattice, and transformation of tetra- to paranatrolite [J].
Gabuda, SP ;
Kozlova, SG .
JOURNAL OF STRUCTURAL CHEMISTRY, 1997, 38 (04) :562-569