Solution structure of human saposin C in a detergent environment

被引:57
作者
Hawkins, CA [1 ]
de Alba, E [1 ]
Tjandra, N [1 ]
机构
[1] NHLBI, Biophys Chem Lab, NIH, Bethesda, MD 20892 USA
关键词
saposin C; nuclear magnetic resonance; detergent micelles; membrane interactions; protein structure;
D O I
10.1016/j.jmb.2004.12.045
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Saposin C is a lysosomal, membrane-binding protein that acts as an activator for the hydrolysis of glucosylceramide by the enzyme glucocerebrosidase. We used high-resolution NMR to determine the three-dimensional solution structure of saposin C in the presence of the detergent sodium dodecyl sulfate (SDS). This structure provides the first representation of membrane bound saposin C at the atomic level. In the presence of SDS, the protein adopts an open conformation with an exposed hydrophobic pocket. In contrast, the previously reported NMR structure of saposin C in the absence of SDS is compact and contains a hydrophobic core that is not exposed to the solvent. NMR data indicate that the SDS molecules interact with the hydrophobic pocket. The structure of saposin C in the presence of SDS is very similar to a monomer in the saposin B homodimer structure. Their comparison reveals possible similarity in the type of protein/lipid interaction as well as structural components differentiating their quaternary structures and functional specificity. Published by Elsevier Ltd.
引用
收藏
页码:1381 / 1392
页数:12
相关论文
共 47 条
[1]   Crystal structure of saposin B reveals a dimeric shell for lipid binding [J].
Ahn, VE ;
Faull, KF ;
Whitelegge, JP ;
Fluharty, AL ;
Privé, GG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :38-43
[2]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[3]   Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings [J].
Barrientos, LG ;
Dolan, C ;
Gronenborn, AM .
JOURNAL OF BIOMOLECULAR NMR, 2000, 16 (04) :329-337
[4]   METHODOLOGICAL ADVANCES IN PROTEIN NMR [J].
BAX, A ;
GRZESIEK, S .
ACCOUNTS OF CHEMICAL RESEARCH, 1993, 26 (04) :131-138
[5]  
Bierfreund U, 2000, METHOD ENZYMOL, V311, P255
[6]   A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles [J].
Chou, JJ ;
Gaemers, S ;
Howder, B ;
Louis, JM ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 2001, 21 (04) :377-382
[7]   Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses [J].
Clore, GM ;
Starich, MR ;
Gronenborn, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (40) :10571-10572
[8]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[9]   Motional model analyses of protein and peptide dynamics using C-13 and N-15 NMR relaxation [J].
Daragan, VA ;
Mayo, KH .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 1997, 31 :63-105
[10]   Solution structure of human saposin c: pH-dependent interaction with phospholipid vesicles [J].
de Alba, E ;
Weiler, S ;
Tjandra, N .
BIOCHEMISTRY, 2003, 42 (50) :14729-14740