Plasma membrane-localized transporter for aluminum in rice

被引:337
作者
Xia, Jixing [1 ]
Yamaji, Naoki [1 ]
Kasai, Tomonari [1 ]
Ma, Jian Feng [1 ]
机构
[1] Okayama Univ, Inst Plant Sci & Resources, Kurashiki, Okayama 7100046, Japan
关键词
ABC TRANSPORTER; IRON TRANSPORT; TOLERANCE; ARABIDOPSIS; TOXICITY; ENCODES; GENE; ACCUMULATION; RESISTANCE; CHEMISTRY;
D O I
10.1073/pnas.1004949107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aluminum (Al) is the most abundant metal in the Earth's crust, but its trivalent ionic form is highly toxic to all organisms at low concentrations. How Al enters cells has not been elucidated in any organisms. Herein, we report a transporter, Nrat1 (Nramp aluminum transporter 1), specific for trivalent Al ion in rice. Nrat1 belongs to the Nramp (natural resistance-associated macrophage protein) family, but shares a low similarity with other Nramp members. When expressed in yeast, Nrat1 transports trivalent Al ion, but not other divalent ions, such as manganese, iron, and cadmium, or the Al-citrate complex. Nrat1 is localized at the plasma membranes of all cells of root tips except epidermal cells. Knockout of Nrat1 resulted in decreased Al uptake, increased Al binding to cell wall, and enhanced Al sensitivity, but did not affect the tolerance to other metals. Expression of Nrat1 is up-regulated by Al in the roots and regulated by a C2H2 zinc finger transcription factor (ART1). We therefore concluded that Nrat1 is a plasma membrane-localized transporter for trivalent Al, which is required for a prior step of final Al detoxification through sequestration of Al into vacuoles.
引用
收藏
页码:18381 / 18385
页数:5
相关论文
共 30 条
[1]  
[Anonymous], ELEMENTS THEIR COMPO
[2]   High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions [J].
Cailliatte, Remy ;
Schikora, Adam ;
Briat, Jean-Francois ;
Mari, Stephane ;
Curie, Catherine .
PLANT CELL, 2010, 22 (03) :904-917
[3]   The NRAMP6 metal transporter contributes to cadmium toxicity [J].
Cailliatte, Remy ;
Lapeyre, Bruno ;
Briat, Jean-Francois ;
Mari, Stephane ;
Curie, Catherine .
BIOCHEMICAL JOURNAL, 2009, 422 :217-228
[4]   Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants [J].
Clemens, S. .
BIOCHIMIE, 2006, 88 (11) :1707-1719
[5]   Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters [J].
Courville, P. ;
Chaloupka, R. ;
Cellier, M. F. M. .
BIOCHEMISTRY AND CELL BIOLOGY, 2006, 84 (06) :960-978
[6]   BRAIN ALUMINUM DISTRIBUTION IN ALZHEIMERS DISEASE AND EXPERIMENTAL NEUROFIBRILLARY DEGENERATION [J].
CRAPPER, DR ;
KRISHNAN, SS ;
DALTON, AJ .
SCIENCE, 1973, 180 (4085) :511-513
[7]   Involvement of NRAMP1 from Arabidopsis thaliana in iron transport [J].
Curie, C ;
Alonso, JM ;
Le Jean, M ;
Ecker, JR ;
Briat, JF .
BIOCHEMICAL JOURNAL, 2000, 347 (pt 3) :749-755
[8]  
DIX DR, 1994, J BIOL CHEM, V269, P26092
[9]   ALUMINUM IN ACIDIC SURFACE WATERS - CHEMISTRY, TRANSPORT, AND EFFECTS [J].
DRISCOLL, CT .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1985, 63 (NOV) :93-104
[10]   An aluminum-activated citrate transporter in barley [J].
Furukawa, Jun ;
Yamaji, Naoki ;
Wang, Hua ;
Mitani, Namiki ;
Murata, Yoshiko ;
Sato, Kazuhiro ;
Katsuhara, Maki ;
Takeda, Kazuyoshi ;
Ma, Jian Feng .
PLANT AND CELL PHYSIOLOGY, 2007, 48 (08) :1081-1091