The pleckstrin homology and phosphotyrosine binding domains of insulin receptor substrate 1 mediate inhibition of apoptosis by insulin

被引:72
作者
Yenush, L [1 ]
Zanella, C [1 ]
Uchida, T [1 ]
Bernal, D [1 ]
White, MF [1 ]
机构
[1] Harvard Univ, Sch Med, Joslin Diabet Ctr, Howard Hughes Med Inst, Boston, MA 02215 USA
关键词
D O I
10.1128/MCB.18.11.6784
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Insulin and insulin-like growth factor 1 (IGF-1) evoke diverse biological effects through receptor-mediated tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. We investigated the elements of IRS-1 signaling that inhibit apoptosis of interleukin 3 (IL-3)-deprived 32D myeloid progenitor cells. 32D cells have few insulin receptors and no IRS proteins; therefore, insulin failed to inhibit apoptosis during IL-3 withdrawal. Insulin stimulated mitogen-activated protein kinase in 32D cells expressing insulin receptors (32D(IR)) but failed to activate the phosphatidylinositol 3 (PI 3)-kinase cascade or to inhibit apoptosis. By contrast, insulin stimulated the PI 3-kinase cascade, inhibited apoptosis, and promoted replication of 32D(IR) cells expressing IRS-1. As expected, insulin did not stimulate PI3-kinase in 32D(IR) cells, which expressed a truncated IRS-1 protein lacking the tail of tyrosine phosphorylation sites. However, this truncated IRS-1 protein, which retained the NH2-terminal pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains, mediated phosphorylation of PKB/akt, inhibition of apoptosis, and replication of 32D(IR) cells during insulin stimulation. These results suggest that a phosphotyrosine-independent mechanism mediated by the PH and PTB domains promoted antiapoptotic and growth actions of insulin. Although PI3-kinase was not activated, its phospholipid products were required, since LY294002 inhibited these responses. Without IRS-1, a chimeric insulin receptor containing a tail of tyrosine phosphorylation sites derived from IRS-1 activated the PI 3-kinase cascade but failed to inhibit apoptosis. Thus, phosphotyrosine-independent IRS-1-linked pathways may be critical for survival and growth of IL-3-deprived 32D cells during insulin stimulation.
引用
收藏
页码:6784 / 6794
页数:11
相关论文
共 72 条
[1]   Early neonatal death in mice homozygous for a null allele of the insulin receptor gene [J].
Accili, D ;
Drago, J ;
Lee, EJ ;
Johnson, MD ;
Cool, MH ;
Salvatore, P ;
Asico, LD ;
Jose, PA ;
Taylor, SI ;
Westphal, H .
NATURE GENETICS, 1996, 12 (01) :106-109
[2]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[3]   Mechanism of activation and function of protein kinase B [J].
Alessi, DR ;
Cohen, P .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) :55-62
[4]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[5]   3 Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro [J].
Alessi, DR ;
Kozlowski, MT ;
Weng, QP ;
Morrice, N ;
Avruch, J .
CURRENT BIOLOGY, 1998, 8 (02) :69-81
[6]   ALTERNATIVE PATHWAY OF INSULIN SIGNALING IN MICE WITH TARGETED DISRUPTION OF THE IRS-1 GENE [J].
ARAKI, E ;
LIPES, MA ;
PATTI, ME ;
BRUNING, JC ;
HAAG, B ;
JOHNSON, RS ;
KAHN, CR .
NATURE, 1994, 372 (6502) :186-190
[7]   Insulin signal transduction through protein kinase cascades [J].
Avruch, J .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1998, 182 (1-2) :31-48
[8]   PHOSPHATIDYLINOSITOL 3'-KINASE IS ACTIVATED BY ASSOCIATION WITH IRS-1 DURING INSULIN STIMULATION [J].
BACKER, JM ;
MYERS, MG ;
SHOELSON, SE ;
CHIN, DJ ;
SUN, XJ ;
MIRALPEIX, M ;
HU, P ;
MARGOLIS, B ;
SKOLNIK, EY ;
SCHLESSINGER, J ;
WHITE, MF .
EMBO JOURNAL, 1992, 11 (09) :3469-3479
[9]  
BAFFY G, 1993, J BIOL CHEM, V268, P6511
[10]  
BAKER J, 1993, CELL, V75, P73, DOI 10.1016/0092-8674(93)90680-O