Paradoxical SR Ca2+ release in guinea-pig cardiac myocytes after β-adrenergic stimulation revealed by two-photon photolysis of caged Ca2+

被引:41
作者
Lindegger, N [1 ]
Niggli, E [1 ]
机构
[1] Univ Bern, Dept Physiol, CH-3012 Bern, Switzerland
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 565卷 / 03期
关键词
D O I
10.1113/jphysiol.2005.084376
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In heart muscle the amplification and shaping of Ca2+ signals governing contraction are orchestrated by recruiting a variable number of Ca2+ sparks. Sparks reflect Ca2+ release from the sarcoplasmic reticulum (SR) via Ca2+ release channels (ryanodine receptors, RyRs). RyRs are activated by Ca2+ influx via L-type Ca2+ channels with a specific probability that may depend on regulatory mechanisms (e.g. beta-adrenergic stimulation) or diseased states (e.g. heart failure). Changes of RyR phosphorylation may be critical for both regulation and impaired function in disease. Using UV flash photolysis of caged Ca2+ and short applications of caffeine in guinea-pig ventricular myocytes, we found that Ca2+ release signals on the cellular level were largely governed by global SR content. During beta-adrenergic stimulation resting myocytes exhibited smaller SR Ca2+ release signals when activated by photolysis (62.3% of control), resulting from reduced SR Ca2+ content under these conditions (58.6% of control). In contrast, local signals triggered with diffraction limited two-photon photolysis displayed the opposite behaviour, exhibiting a larger Ca2+ release (164% of control) despite reduced global and local SR Ca2+ content. This apparent paradox implies changes of RyR open probabilities after beta-adrenergic stimulation, enhancing local regenerativity and reliability of Ca2+ signalling. Thus, our results underscore the importance of phosphorylation of RyRs (or of a related protein), as a regulatory physiological mechanism that may also provide new therapeutic avenues to recover impaired Ca2+ signalling during cardiac disease.
引用
收藏
页码:801 / 813
页数:13
相关论文
共 57 条
[1]   FRACTIONAL SR CA RELEASE IS REGULATED BY TRIGGER CA AND SR CA CONTENT IN CARDIAC MYOCYTES [J].
BASSANI, JWM ;
YUAN, WL ;
BERS, DM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 268 (05) :C1313-C1319
[2]   Cardiac excitation-contraction coupling [J].
Bers, DM .
NATURE, 2002, 415 (6868) :198-205
[3]   CALCIUM SPARKS - ELEMENTARY EVENTS UNDERLYING EXCITATION-CONTRACTION COUPLING IN HEART-MUSCLE [J].
CHENG, H ;
LEDERER, WJ ;
CANNELL, MB .
SCIENCE, 1993, 262 (5134) :740-744
[4]   Calcium signalling in cardiac muscle: refractoriness revealed by coherent activation [J].
DelPrincipe, F ;
Egger, M ;
Niggli, E .
NATURE CELL BIOLOGY, 1999, 1 (06) :323-329
[6]   Regulatory role of phospholamban in the efficiency of cardiac sarcoplasmic reticulum Ca2+ transport [J].
Frank, K ;
Tilgmann, C ;
Shannon, TR ;
Bers, DM ;
Kranias, EG .
BIOCHEMISTRY, 2000, 39 (46) :14176-14182
[7]   Modulation of excitation-contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current trigger [J].
Ginsburg, KS ;
Bers, DM .
JOURNAL OF PHYSIOLOGY-LONDON, 2004, 556 (02) :463-480
[8]   Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure [J].
Gomez, AM ;
Valdivia, HH ;
Cheng, H ;
Lederer, MR ;
Santana, LF ;
Cannell, MB ;
McCune, SA ;
Altschuld, RA ;
Lederer, WJ .
SCIENCE, 1997, 276 (5313) :800-806
[9]   ASSOCIATION OF TRIADIN WITH THE RYANODINE RECEPTOR AND CALSEQUESTRIN IN THE LUMEN OF THE SARCOPLASMIC-RETICULUM [J].
GUO, W ;
CAMPBELL, KP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (16) :9027-9030
[10]  
Györke I, 2004, BIOPHYS J, V86, P2121, DOI 10.1016/S0006-3495(04)74271-X