Block thresholding and wavelet estimation for nonequispaced samples

被引:20
作者
Chicken, E [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
关键词
wavelets; nonparametric regression; adaptive; Besov class; Holder class; Poisson process;
D O I
10.1016/S0378-3758(02)00238-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For samples with the design points occurring as a Poisson process or having a uniform distribution, the wavelet method of block thresholding can be applied directly to the data as though it was equispaced without sacrificing adaptivity or optimality. When the underlying true function is in certain Besov and Holder classes, the resulting estimator achieves the minimax rate of convergence. Simulation results are examined. (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 129
页数:17
相关论文
共 10 条
[1]   Lower bounds on the rate of convergence of nonparametric regression estimates [J].
Antos, A ;
Györfi, L ;
Kohler, M .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 83 (01) :91-100
[2]  
Cai TT, 1998, ANN STAT, V26, P1783
[3]   Adaptive wavelet estimation: A block thresholding and oracle inequality approach [J].
Cai, TT .
ANNALS OF STATISTICS, 1999, 27 (03) :898-924
[4]   Wavelet estimation for samples with random uniform design [J].
Cai, TT ;
Brown, LD .
STATISTICS & PROBABILITY LETTERS, 1999, 42 (03) :313-321
[5]  
CHICKEN E, 2001, THESIS PURDUE U
[6]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[7]  
Hall P, 1997, ANN STAT, V25, P1912
[8]  
Hall P, 1998, ANN STAT, V26, P922
[9]  
Hall P, 1999, STAT SINICA, V9, P33
[10]  
Meyer Y., 1990, ONDELETTES OPERATEUR