Isolation and characterization of the Arabidopsis organ fusion gene HOTHEAD

被引:80
作者
Krolikowski, KA [1 ]
Victor, JL [1 ]
Wagler, TN [1 ]
Lolle, SJ [1 ]
Pruitt, RE [1 ]
机构
[1] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA
关键词
alpha-hydroxynitrile lyase; cuticle; epidermis; organ fusion; Arabidopsis;
D O I
10.1046/j.1365-313X.2003.01824.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The outer epidermal plant cell wall and cuticle play an important role in regulating both abiotic and biotic interactions between the plant and its environment. In addition to acting as a protective barrier that limits water loss, the effects of detrimental irradiation and invasion by pathogens, the epidermis also offers an interface that is inert to interactions between organs and ensures proper separation and expansion of organs at the growing points of the plant. Here, we describe the molecular cloning and characterization of HOTHEAD (HTH ), a gene required to limit cellular interactions between contacting epidermal cells during floral development. HTH is a member of a small gene family in Arabidopsis and encodes an enzyme related to a group of FAD-containing oxidoreductases that have been described in several other species. Characterization of 11 independently derived mutant alleles suggests that key amino acids are shared between these related groups of enzymes and identify a cluster of other functionally important residues that are highly conserved only within the Arabidopsis gene family. Our findings add this new type of enzyme to a growing list of enzymes that have been shown to be involved in regulating post-genital organ fusion. Expression analysis of the HTH gene shows that it is expressed in all tissues tested, including roots, and is not epidermis-specific. Furthermore, the sequence data unequivocally show that none of the alleles isolated are epigenetic alleles as suggested by genetic behavior previously observed at this locus.
引用
收藏
页码:501 / 511
页数:11
相关论文
共 47 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]  
[Anonymous], 2000, Nature
[3]   CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation [J].
Becraft, PW ;
Stinard, PS ;
McCarty, DR .
SCIENCE, 1996, 273 (5280) :1406-1409
[4]   The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response [J].
Becraft, PW ;
Kang, SH ;
Suh, SG .
PLANT PHYSIOLOGY, 2001, 127 (02) :486-496
[5]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[6]   An epigenetic mutation responsible for natural variation in floral symmetry [J].
Cubas, P ;
Vincent, C ;
Coen, E .
NATURE, 1999, 401 (6749) :157-161
[7]  
DAS OP, 1994, GENETICS, V136, P1121
[8]   The hydroxynitrile lyase from almond: A lyase that looks like an oxidoreductase [J].
Dreveny, I ;
Gruber, K ;
Glieder, A ;
Thompson, A ;
Kratky, C .
STRUCTURE, 2001, 9 (09) :803-815
[9]   A SIMPLE AND RAPID METHOD FOR THE PREPARATION OF PLANT GENOMIC DNA FOR PCR ANALYSIS [J].
EDWARDS, K ;
JOHNSTONE, C ;
THOMPSON, C .
NUCLEIC ACIDS RESEARCH, 1991, 19 (06) :1349-1349
[10]   Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J].
Emanuelsson, O ;
Nielsen, H ;
Brunak, S ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :1005-1016