1.5 μm room-temperature emission of square-lattice photonic-crystal waveguide lasers with a single line defect -: art. no. 151111

被引:11
作者
Checoury, X
Boucaud, P
Lourtioz, JM
Gauthier-Lafaye, O
Bonnefont, S
Mulin, D
Valentin, J
Lozes-Dupuy, F
Pommereau, F
Cuisin, C
Derouin, E
Drisse, O
Legouezigou, L
Lelarge, F
Poingt, F
Duan, GH
Talneau, A
机构
[1] Univ Paris 11, Inst Elect Fondamentale, CNRS, UMR 8622, F-91405 Orsay, France
[2] CNRS, LAAS, F-31077 Toulouse, France
[3] Alcatel Res & Innovat, Alcatel Thales Lab 3 5, F-91460 Marcoussis, France
[4] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
关键词
D O I
10.1063/1.1905810
中图分类号
O59 [应用物理学];
学科分类号
摘要
Narrow waveguides consisting of a single defect-line (W1) in a square lattice photonic crystal are fabricated on InP using the substrate approach. A single-mode distributed-feedback laser emission is obtained under optical pumping at room temperature. Lasing occurs at the second folding point of the dispersion curve of the fundamental waveguide mode (wave vector k=0). The emitted wavelength ranges from 1420 to 1580 nm for a lattice period varying from 460 to 520 nm and a constant air filling factor of ∼ 26%. The highly monomode behavior is explained using two-dimensional plane-wave models. Similar experiments conducted on triangular lattice W1 waveguides do not yield a laser emission. Three-dimensional simulations confirm that triangular lattice W1 waveguides suffer higher losses than their square homologues. (C) 2005 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 11 条
[1]   Intrinsic diffraction losses in photonic crystal waveguides with line defects [J].
Andreani, LC ;
Agio, M .
APPLIED PHYSICS LETTERS, 2003, 82 (13) :2011-2013
[2]   Distributed feedback regime of photonic crystal waveguide lasers at 1.5 μm [J].
Checoury, X ;
Boucaud, P ;
Lourtioz, JM ;
Pommereau, F ;
Cuisin, C ;
Derouin, E ;
Drisse, O ;
Legouezigou, L ;
Lelarge, F ;
Poingt, F ;
Duan, GH ;
Mulin, D ;
Bonnefont, S ;
Gauthier-Lafaye, O ;
Valentin, J ;
Lozes, F ;
Talneau, A .
APPLIED PHYSICS LETTERS, 2004, 85 (23) :5502-5504
[3]  
CHEN Q, IN PRESS OPT COMMUN
[4]   OBSERVATION OF DESTRUCTIVE INTERFERENCE IN THE RADIATION LOSS OF 2ND-ORDER DISTRIBUTED FEEDBACK LASERS [J].
HENRY, CH ;
KAZARINOV, RF ;
LOGAN, RA ;
YEN, R .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1985, 21 (02) :151-154
[5]   2ND-ORDER DISTRIBUTED FEEDBACK LASERS WITH MODE SELECTION PROVIDED BY 1ST-ORDER RADIATION LOSSES [J].
KAZARINOV, RF ;
HENRY, CH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1985, 21 (02) :144-150
[6]   Two-channel tunable laser diode based on photonic crystals [J].
Mahnkopf, S ;
Arlt, M ;
Kamp, M ;
Colson, V ;
Duan, GH ;
Forchel, A .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (02) :353-355
[7]   Dispersion relation and optical transmittance of a hexagonal photonic crystal slab [J].
Ochiai, T ;
Sakoda, K .
PHYSICAL REVIEW B, 2001, 63 (12)
[8]   Two-dimensional vector-coupled-mode theory for textured planar waveguides [J].
Paddon, P ;
Young, JF .
PHYSICAL REVIEW B, 2000, 61 (03) :2090-2101
[9]   Fabrication of low loss two-dimensional InP photonic crystals by inductively coupled plasma etching [J].
Pommereau, F ;
Legouézigou, L ;
Hubert, S ;
Sainson, S ;
Chandouineau, JP ;
Fabre, S ;
Duan, GH ;
Lombardet, B ;
Ferrini, R ;
Houdré, R .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (05) :2242-2245
[10]  
Sakoda K., 2004, OPTICAL PROPERTIES P