Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads

被引:228
作者
Carpi, F
Chiarelli, P
Mazzoldi, A
De Rossi, D
机构
[1] Univ Pisa, Fac Engn, Interdepartmental Res Ctr E Piaggio, I-56100 Pisa, Italy
[2] CNR, Inst Clin Physiol, I-56100 Pisa, Italy
关键词
actuator characterisation; dielectric elastomer; compliant electrodes;
D O I
10.1016/S0924-4247(03)00257-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work intends to extend the electromechanical characterisation of dielectric elastomer actuators. Planar actuators were realised with a 50 mum-thick film of an acrylic elastomer coated with compliant electrodes. The isotonic transverse strain, the isometric transverse stress and the driving current, due to a 2 s high voltage impulse, were measured for four electrode materials (thickened electrolyte solution, graphite spray, carbon grease and graphite powder), four transverse prestress values (19.6, 29.4, 39.2 and 49.0 kPa) and different driving voltages (up to the dielectric breakdown voltage). Results showed that the electrode material and prestress strongly influence the electromechanical performances of the devices. Actuators with graphite spray electrodes and transverse prestress of 39.2 kPa exhibited an isotonic transverse strain of 6% at 49 V/mum, with a driving current per unit electrode area of 3.5 mu A/cm(2), and an isometric transverse stress of 49 kPa at 42 V/mum. An electromechanical coupling efficiency of 10% at 21 V/mum was calculated for actuators with thickened electrolyte solution electrodes and a transverse prestress of 29.4 kPa. The presented data permits to choose the best electrode material and the best prestress value (among those tested), to obtain the maximum isotonic transverse strain, the maximum isometric transverse stress or the maximum efficiency for different ranges of applied electric field. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 11 条
[1]  
BARCOHEN Y, 2001, ELECTROACTIVE POLYM, V93, P429
[2]  
BARCOHEN Y, 2001, ELECTROACTIVE POLYM, V8, P23
[3]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[4]  
De Rossi D., 1992, Journal of Intelligent Material Systems and Structures, V3, P75, DOI 10.1177/1045389X9200300105
[5]   Performance and work capacity of a polypyrrole conducting polymer linear actuator [J].
DellaSanta, A ;
DeRossi, D ;
Mazzoldi, A .
SYNTHETIC METALS, 1997, 90 (02) :93-100
[6]   Design and performance of an electrostrictive-polymer-film acoustic actuator [J].
Heydt, R ;
Kornbluh, R ;
Pelrine, R ;
Mason, V .
JOURNAL OF SOUND AND VIBRATION, 1998, 215 (02) :297-311
[7]   Microfabricating conjugated polymer actuators [J].
Jager, EWH ;
Smela, E ;
Inganäs, O .
SCIENCE, 2000, 290 (5496) :1540-1545
[8]   High-speed electrically actuated elastomers with strain greater than 100% [J].
Pelrine, R ;
Kornbluh, R ;
Pei, QB ;
Joseph, J .
SCIENCE, 2000, 287 (5454) :836-839
[9]   Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation [J].
Pelrine, RE ;
Kornbluh, RD ;
Joseph, JP .
SENSORS AND ACTUATORS A-PHYSICAL, 1998, 64 (01) :77-85
[10]   Polyurethane elastomer actuator [J].
Ueda, T ;
Kasazaki, T ;
Kunitake, N ;
Hirai, T ;
Kyokane, J ;
Yoshino, K .
SYNTHETIC METALS, 1997, 85 (1-3) :1415-1416