Stochastic resonance of front motion in inhomogeneous media

被引:7
作者
Dikshtein, I
Neiman, A
Schimansky-Geier, L
机构
[1] Russian Acad Sci, Inst Radio Engn & Elect, Moscow 103907, Russia
[2] Univ Missouri, Ctr Neurodynam, St Louis, MO 63121 USA
[3] Saratov NG Chernyshevskii State Univ, Dept Phys, Saratov 410071, Russia
[4] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
关键词
D O I
10.1016/S0375-9601(98)00501-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the motion of a front in a bistable system with two adjacent localized attracting inhomogeneities. We assume that the front is trapped by the inhomogeneities. If the system is additionally driven by noise the front is able to perform stochastic motion and hence achieves a probability to jump between the several attracting inhomogeneities. With a small periodic force applied to the system we will observe stochastic resonance in the motion of the front. At an optimal noise level the hopping dynamics of the front becomes most coherent and the response of the system to the periodic force is maximal. This effect is proposed for the control of front motion and as techniques for measurements in inhomogeneous bistable dynamics. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 51 条
[1]   DYNAMICS OF SOLITONS UNDER RANDOM PERTURBATIONS [J].
BASS, FG ;
KIVSHAR, YS ;
KONOTOP, VV ;
SINITSYN, YA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 157 (02) :63-181
[2]   STOCHASTIC RESONANCE IN THE LANDAU-GINZBURG EQUATION [J].
BENZI, R ;
SUTERA, A ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (12) :2239-2245
[3]  
Brey JJ, 1996, PHYS LETT A, V216, P240, DOI 10.1016/0375-9601(96)00291-5
[4]   NUCLEATION THEORY OF OVERDAMPED SOLITON MOTION [J].
BUTTIKER, M ;
LANDAUER, R .
PHYSICAL REVIEW A, 1981, 23 (03) :1397-1410
[5]   STATISTICAL-MECHANICS OF ONE-DIMENSIONAL SOLITARY-WAVE-BEARING SCALAR FIELDS - EXACT RESULTS AND IDEAL-GAS PHENOMENOLOGY [J].
CURRIE, JF ;
KRUMHANSL, JA ;
BISHOP, AR ;
TRULLINGER, SE .
PHYSICAL REVIEW B, 1980, 22 (02) :477-496
[6]  
DIKSHTEIN I, 1998, IN PRESS STUDIES APP, V13
[7]  
DIKSHTEIN I, 1997, B AM PHYS SOC, V42, P338
[8]  
DOLD RK, 1982, SOLITONS NONLINEAR W
[9]  
Ebeling W., 1982, Physik der Selbstorganisation und Evolution
[10]   SUBMONOLAYER MAGNETISM OF FE(110) ON W(110) - FINITE-WIDTH SCALING OF STRIPES AND PERCOLATION BETWEEN ISLANDS [J].
ELMERS, HJ ;
HAUSCHILD, J ;
HOCHE, H ;
GRADMANN, U ;
BETHGE, H ;
HEUER, D ;
KOHLER, U .
PHYSICAL REVIEW LETTERS, 1994, 73 (06) :898-901