Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the arabidopsis hypersensitive response

被引:79
作者
Zhang, C
Czymmek, KJ
Shapiro, AD [1 ]
机构
[1] Univ Delaware, Coll Agr Sci, Dept Plant & Soil Sci, Delaware Agr Expt Stn, Newark, DE 19717 USA
[2] Univ Delaware, Dept Biol Sci, Newark, DE 19717 USA
关键词
disease resistance; signal transduction;
D O I
10.1094/MPMI.2003.16.11.962
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric oxide (NO) has been suggested to play a role in the hypersensitive response (HR). Single- and double-label fluorescence microscopy experiments were conducted using Arabidopsis leaves infected with Pseudomonas syringae pv. tomato DC3000 carrying either avrB or avrRpt2. Kinetics of NO production were followed by measurement of green 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) triazole fluorescence in leaves coinfiltrated with DAF-FM diacetate. Kinetics of hypersensitive cell death were followed by measurement of cytoplasmic red fluorescence following internalization of coinfiltrated propidium iodide through compromised plasma membranes. Neither NO accumulation nor cell death was seen until approximately 3 h postinoculation of Columbia leaves with DC3000.avrB or approximately 5.5 h post-inoculation with DC3000.avrRpt2. Subsequent NO accumulation kinetics closely paralleled HR progression in both Columbia and ndr1-1 mutant plants. These data established that NO accumulation does not happen sufficiently early for NO to be a signaling component controlling HR triggering. NO accumulation did contribute to the HR, as proven by an approximately 1-h delay in cell death kinetics caused by an NO scavenger or an NO synthase inhibitor. NO was first seen as punctate foci at the cell surface. Subsequent NO accumulation patterns were consistent with NO being an intercellular signal that functions in cell-to-cell spread of the HR.
引用
收藏
页码:962 / 972
页数:11
相关论文
共 41 条
[1]   Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons [J].
Arancio, O ;
Kiebler, M ;
Lee, CJ ;
LevRam, V ;
Tsien, RY ;
Kandel, ER ;
Hawkins, RD .
CELL, 1996, 87 (06) :1025-1035
[2]  
ARNDTJOVIN DJ, 1989, METHOD CELL BIOL, V30, P417
[3]   Localization of nitric-oxide synthase in plant peroxisomes [J].
Barroso, JB ;
Corpas, FJ ;
Carreras, A ;
Sandalio, LM ;
Valderrama, R ;
Palma, JM ;
Lupiáñez, JA ;
del Río, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36729-36733
[4]   Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers [J].
Beligni, MV ;
Fath, A ;
Bethke, PC ;
Lamattina, L ;
Jones, RL .
PLANT PHYSIOLOGY, 2002, 129 (04) :1642-1650
[5]   Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues [J].
Beligni, MV ;
Lamattina, L .
PLANTA, 1999, 208 (03) :337-344
[6]   NDR1, a pathogen-induced component required for Arabidopsis disease resistance [J].
Century, KS ;
Shapiro, AD ;
Repetti, PP ;
Dahlbeck, D ;
Holub, E ;
Staskawicz, BJ .
SCIENCE, 1997, 278 (5345) :1963-1965
[7]   NDR1, A LOCUS OF ARABIDOPSIS-THALIANA THAT IS REQUIRED FOR DISEASE RESISTANCE TO BOTH A BACTERIAL AND A FUNGAL PATHOGEN [J].
CENTURY, KS ;
HOLUB, EB ;
STASKAWICZ, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6597-6601
[8]   RETRACTED: The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex (Retracted Article. See vol 119, pg 445, 2004) [J].
Chandok, MR ;
Ytterberg, AJ ;
van Wijk, KJ ;
Klessig, DF .
CELL, 2003, 113 (04) :469-482
[9]   NO way back:: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures [J].
Clarke, A ;
Desikan, R ;
Hurst, RD ;
Hancock, JT ;
Neill, SJ .
PLANT JOURNAL, 2000, 24 (05) :667-677
[10]   Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells [J].
de Pinto, MC ;
Tommasi, F ;
De Gara, L .
PLANT PHYSIOLOGY, 2002, 130 (02) :698-708