Numeric simulation of plant signaling networks

被引:41
作者
Genoud, T [1 ]
Santa Cruz, MBT [1 ]
Métraux, JP [1 ]
机构
[1] Univ Fribourg, Dept Biol, CH-1700 Fribourg, Switzerland
关键词
D O I
10.1104/pp.126.4.1430
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants have evolved an intricate signaling apparatus that integrates relevant information and allows an optimal response to environmental conditions. For instance, the coordination of defense responses against pathogens involves sophisticated molecular detection and communication systems. Multiple protection strategies may be deployed differentially by the plant according to the nature of the invading organism. These responses are also influenced by the environment, metabolism, and developmental stage of the plant. Though the cellular signaling processes traditionally have been described as linear sequences of events, it is now evident that they may be represented more accurately as network-like structures. The emerging paradigm can be represented readily with the use of Boolean language. This digital (numeric) formalism allows an accurate qualitative description of the signal transduction processes, and a dynamic representation through computer simulation. Moreover, it provides the required power to process the increasing amount of information emerging from the fields of genomics and proteomics, and from the use of new technologies such as microarray analysis. In this review, we have used the Boolean language to represent and analyze part of the signaling network of disease resistance in Arabidopsis.
引用
收藏
页码:1430 / 1437
页数:8
相关论文
共 49 条
[1]   The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance [J].
Bowling, SA ;
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1997, 9 (09) :1573-1584
[2]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[3]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[4]   OpenMP: a parallel standard for the masses [J].
Clark, D .
IEEE CONCURRENCY, 1998, 6 (01) :10-12
[5]   Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis [J].
Clarke, JD ;
Volko, SM ;
Ledford, H ;
Ausubel, FM ;
Dong, XN .
PLANT CELL, 2000, 12 (11) :2175-2190
[6]  
Dangl JL, 1996, PLANT CELL, V8, P1793, DOI 10.1105/tpc.8.10.1793
[7]   ARABIDOPSIS SIGNAL-TRANSDUCTION MUTANT DEFECTIVE IN CHEMICALLY AND BIOLOGICALLY INDUCED DISEASE RESISTANCE [J].
DELANEY, TP ;
FRIEDRICH, L ;
RYALS, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6602-6606
[8]   A novel zinc finger protein is encoded by the arabidopsis LSD1 gene and functions as a negative regulator of plant cell death [J].
Dietrich, RA ;
Richberg, MH ;
Schmidt, R ;
Dean, C ;
Dangl, JL .
CELL, 1997, 88 (05) :685-694
[9]   Salicylic acid and disease resistance in plants [J].
Durner, J ;
Shah, J ;
Klessig, DF .
TRENDS IN PLANT SCIENCE, 1997, 2 (07) :266-274
[10]   Molecular glue: Kinase anchoring and scaffold proteins [J].
Faux, MC ;
Scott, JD .
CELL, 1996, 85 (01) :9-12