The Histone H3K79 Methyltransferase Dot1L Is Essential for Mammalian Development and Heterochromatin Structure

被引:295
作者
Jones, Brendan [1 ]
Su, Hui [1 ]
Bhat, Audesh [2 ]
Lei, Hong
Bajko, Jeffrey [1 ]
Hevi, Sarah [1 ]
Baltus, Gretchen A. [1 ]
Kadam, Shilpa [1 ]
Zhai, Huili
Valdez, Reginald
Gonzalo, Susana [2 ]
Zhang, Yi [3 ,4 ]
Li, En [1 ]
Chen, Taiping [1 ]
机构
[1] Novartis Inst Biomed Res, Epigenet Program, Cambridge, MA USA
[2] Washington Univ, Sch Med, Dept Radiat Oncol, Radiat & Canc Biol Div, St Louis, MO USA
[3] Howard Hughes Med Inst, Chevy Chase, MD USA
[4] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
关键词
D O I
10.1371/journal.pgen.1000190
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Dot1 is an evolutionarily conserved histone methyltransferase specific for lysine 79 of histone H3 (H3K79). In Saccharomyces cerevisiae, Dot1-mediated H3K79 methylation is associated with telomere silencing, meiotic checkpoint control, and DNA damage response. The biological function of H3K79 methylation in mammals, however, remains poorly understood. Using gene targeting, we generated mice deficient for Dot1L, the murine Dot1 homologue. Dot1L-deficient embryos show multiple developmental abnormalities, including growth impairment, angiogenesis defects in the yolk sac, and cardiac dilation, and die between 9.5 and 10.5 days post coitum. To gain insights into the cellular function of Dot1L, we derived embryonic stem (ES) cells from Dot1L mutant blastocysts. Dot1L-deficient ES cells show global loss of H3K79 methylation as well as reduced levels of heterochromatic marks (H3K9 di-methylation and H4K20 tri-methylation) at centromeres and telomeres. These changes are accompanied by aneuploidy, telomere elongation, and proliferation defects. Taken together, these results indicate that Dot1L and H3K79 methylation play important roles in heterochromatin formation and in embryonic development.
引用
收藏
页数:11
相关论文
共 34 条
[1]   Induction of embryonic hematopoietic and endothelial stem/progenitor cells by hedgehog-mediated signals [J].
Baron, MH .
DIFFERENTIATION, 2001, 68 (4-5) :175-185
[2]   Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination [J].
Benetti, Roberta ;
Gonzalo, Susana ;
Jaco, Isobel ;
SChotta, Gunnar ;
Klatt, Peter ;
Jenuwein, Thomas ;
Blasco, Maria A. .
JOURNAL OF CELL BIOLOGY, 2007, 178 (06) :925-936
[3]   Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm [J].
Bielinska, M ;
Narita, N ;
Heikinheimo, M ;
Porter, SB ;
Wilson, DB .
BLOOD, 1996, 88 (10) :3720-3730
[4]   New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin [J].
Chan, SWL ;
Blackburn, EH .
ONCOGENE, 2002, 21 (04) :553-563
[5]   Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b [J].
Chen, TP ;
Ueda, Y ;
Dodge, JE ;
Wang, ZJ ;
Li, E .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (16) :5594-5605
[6]   Structural and sequence motifs of protein (histone) methylation enzymes [J].
Cheng, XD ;
Collins, RE ;
Zhang, X .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2005, 34 :267-294
[7]   Histone H3-K9 methyltransferase ESET is essential for early development [J].
Dodge, JE ;
Kang, YK ;
Beppu, H ;
Lei, H ;
Li, E .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (06) :2478-2486
[8]   Telomere maintenance by recombination in human cells [J].
Dunham, MA ;
Neumann, AA ;
Fasching, CL ;
Reddel, RR .
NATURE GENETICS, 2000, 26 (04) :447-450
[9]   Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres [J].
Ekwall, K ;
Olsson, T ;
Turner, BM ;
Cranston, G ;
Allshire, RC .
CELL, 1997, 91 (07) :1021-1032
[10]   Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain [J].
Feng, Q ;
Wang, HB ;
Ng, HH ;
Erdjument-Bromage, H ;
Tempst, P ;
Struhl, K ;
Zhang, Y .
CURRENT BIOLOGY, 2002, 12 (12) :1052-1058