Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage

被引:112
作者
Szutorisz, H
Canzonetta, C
Georgiou, A
Chow, CM
Tora, L
Dillon, N
机构
[1] Univ London Imperial Coll Sci Technol & Med, MRC, Ctr Clin Sci, Gene Regulat & Chromatin Grp,Fac Med, London W12 0NN, England
[2] ULP, CNRS, INSERM, UMR 7104,Inst Genet & Biol Mol & Cellulaire, Illkirch Graffenstaden, France
关键词
D O I
10.1128/MCB.25.5.1804-1820.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The differentiation potential of stem cells is determined by the ability of these cells to establish and maintain developmentally regulated gene expression programs that are specific to different lineages. Although transcriptionally potentiated epigenetic states of genes have been described for haematopoietic progenitors, the developmental stage at which the formation of lineage-specific gene expression domains is initiated remains unclear. In this study, we show that an intergenic cis-acting element in the mouse lambda5-VpreB1 locus is marked by histone H3 acetylation and histone H3 lysine 4 methylation at a discrete site in embryonic stem (ES) cells. The epigenetic modifications spread from this site toward the VpreB1 and lambda5 genes at later stages of B-cell development, and a large, active chromatin domain is established in pre-B cells when the genes are fully expressed. In early B-cell progenitors, the binding of haematopoietic factor PU.1 coincides with the expansion of the marked region, and the region becomes a center for the recruitment of general transcription factors and RNA polymerase II. In pre-B cells, E2A also binds to the locus, and general transcription factors are distributed across the active domain, including the gene promoters and the intergenic region. These results suggest that localized epigenetic marking is important for establishing the transcriptional competence of the lambda5 and VpreB1 genes as early as the pluripotent ES cell stage.
引用
收藏
页码:1804 / 1820
页数:17
相关论文
共 88 条
[1]   A clonogenic common myeloid progenitor that gives rise to all myeloid lineages [J].
Akashi, K ;
Traver, D ;
Miyamoto, T ;
Weissman, IL .
NATURE, 2000, 404 (6774) :193-197
[2]  
Anderson MK, 1999, DEVELOPMENT, V126, P3131
[3]   Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2 [J].
Anguita, E ;
Hughes, J ;
Heyworth, C ;
Blobel, GA ;
Wood, WG ;
Higgs, DR .
EMBO JOURNAL, 2004, 23 (14) :2841-2852
[4]   Identification of a conserved erythroid specific domain of histone acetylation across the α-globin gene cluster [J].
Anguita, E ;
Johnson, CA ;
Wood, WG ;
Turner, BM ;
Higgs, DR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :12114-12119
[5]  
Besse Sylvie, 1995, Gene Expression, V4, P143
[6]   Developmental stage-specific epigenetic control of human β-globin gene expression is potentiated in hematopoietic progenitor cells prior to their transcriptional activation [J].
Bottardi, S ;
Aumont, A ;
Grosveld, F ;
Milot, E .
BLOOD, 2003, 102 (12) :3989-3997
[7]   Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction [J].
Brand, M ;
Yamamoto, K ;
Staub, A ;
Tora, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18285-18289
[8]   Signalling, cell cycle and pluripotency in embryonic stem cells [J].
Burdon, T ;
Smith, A ;
Savatier, P .
TRENDS IN CELL BIOLOGY, 2002, 12 (09) :432-438
[9]   Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells [J].
Chambers, I ;
Colby, D ;
Robertson, M ;
Nichols, J ;
Lee, S ;
Tweedie, S ;
Smith, A .
CELL, 2003, 113 (05) :643-655
[10]   Regulation of B lymphocyte and macrophage development by graded expression of PU.1 [J].
DeKoter, RP ;
Singh, H .
SCIENCE, 2000, 288 (5470) :1439-1441