Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury

被引:555
作者
Hsieh, Patrick C. H.
Segers, Vincent F. M.
Davis, Michael E.
MacGillivray, Catherine
Gannon, Joseph
Molkentin, Jeffery D.
Robbins, Jeffrey
Lee, Richard T. [1 ]
机构
[1] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Med,Cardiovasc Div, Cambridge, MA 02139 USA
[2] Univ Cincinnati, Cincinnati Childrens Hosp, Dept Pediat, Div Mol Cardiovasc Biol, Cincinnati, OH 45229 USA
关键词
D O I
10.1038/nm1618
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An emerging concept is that the mammalian myocardium has the potential to regenerate, but that regeneration might be too inefficient to repair the extensive myocardial injury that is typical of human disease(1-8). However, the degree to which stem cells or precursor cells contribute to the renewal of adult mammalian cardiomyocytes remains controversial. Here we report evidence that stem cells or precursor cells contribute to the replacement of adult mammalian cardiomyocytes after injury but do not contribute significantly to cardiomyocyte renewal during normal aging. We generated double-transgenic mice to track the fate of adult cardiomyocytes in a 'pulsechase' fashion: after a 4-OH-tamoxifen pulse, green fluorescent protein (GFP) expression was induced only in cardiomyocytes, with 82.7% of cardiomyocytes expressing GFP. During normal aging up to one year, the percentage of GFP(+) cardiomyocytes remained unchanged, indicating that stem or precursor cells did not refresh uninjured cardiomyocytes at a significant rate during this period of time. By contrast, after myocardial infarction or pressure overload, the percentage of GFP(+) cardiomyocytes decreased from 82.8% in heart tissue from sham-treated mice to 67.5% in areas bordering a myocardial infarction, 76.6% in areas away from a myocardial infarction, and 75.7% in hearts subjected to pressure overload, indicating that stem cells or precursor cells had refreshed the cardiomyocytes.
引用
收藏
页码:970 / 974
页数:5
相关论文
共 16 条
[1]   REGENERATION OF VENTRICULAR MYOCARDIUM IN AMPHIBIANS [J].
BECKER, RO ;
CHAPIN, S ;
SHERRY, R .
NATURE, 1974, 248 (5444) :145-147
[2]   Adult cardiac stem cells are multipotent and support myocardial regeneration [J].
Beltrami, AP ;
Barlucchi, L ;
Torella, D ;
Baker, M ;
Limana, F ;
Chimenti, S ;
Kasahara, H ;
Rota, M ;
Musso, E ;
Urbanek, K ;
Leri, A ;
Kajstura, J ;
Nadal-Ginard, B ;
Anversa, P .
CELL, 2003, 114 (06) :763-776
[3]   Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation [J].
Dor, Y ;
Brown, J ;
Martinez, OI ;
Melton, DA .
NATURE, 2004, 429 (6987) :41-46
[4]   Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction [J].
Ducharme, A ;
Frantz, S ;
Aikawa, M ;
Rabkin, E ;
Lindsey, M ;
Rohde, LE ;
Schoen, FJ ;
Kelly, RA ;
Werb, Z ;
Libby, P ;
Lee, RT .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (01) :55-62
[5]   Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines [J].
Fazel, Shafie ;
Cimini, Massimo ;
Chen, Liwen ;
Li, Shuhong ;
Angoulvant, Denis ;
Fedak, Paul ;
Verma, Subodh ;
Weisel, Richard D. ;
Keating, Armand ;
Li, Ren-Ke .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (07) :1865-1877
[6]   Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers [J].
Hsieh, PCH ;
Davis, ME ;
Gannon, J ;
MacGillivray, C ;
Lee, RT .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (01) :237-248
[7]   Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells [J].
Jackson, KA ;
Majka, SM ;
Wang, HG ;
Pocius, J ;
Hartley, CJ ;
Majesky, MW ;
Entman, ML ;
Michael, LH ;
Hirschi, KK ;
Goodell, MA .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 107 (11) :1395-1402
[8]   Postnatal isl1+cardioblasts enter fully differentiated cardiomyocyte lineages [J].
Laugwitz, KL ;
Moretti, A ;
Lam, J ;
Gruber, P ;
Chen, YH ;
Woodard, S ;
Lin, LZ ;
Cai, CL ;
Lu, MM ;
Reth, M ;
Platoshyn, O ;
Yuan, JXJ ;
Evans, S ;
Chien, KR .
NATURE, 2005, 433 (7026) :647-653
[9]  
Novak A, 2000, GENESIS, V28, P147, DOI 10.1002/1526-968X(200011/12)28:3/4<147::AID-GENE90>3.0.CO
[10]  
2-G