Microstructure of the LiCoO2 (cathode)/La2/3-xLi3xTiO3 (electrolyte) interface and its influences on the electrochemical properties

被引:23
作者
Kishida, K. [1 ]
Wada, N.
Adachi, H.
Tanaka, K.
Inui, H.
Yada, C.
Irlyama, Y.
OgUini, Z.
机构
[1] Kyoto Univ, Dept Mat Sci & Engn, Sakyo Ku, Kyoto 6068501, Japan
[2] Kyoto Univ, Dept Energy & Hydrocarbon Chem, Nishikyo Ku, Kyoto 6158510, Japan
关键词
crystalline oxides; interface structure; interface defects; transmission electron microscopy (TEM); electrochemistry;
D O I
10.1016/j.actamat.2007.04.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two different types of lithium lanthanum titanate (LLT)/LiCoO2 assemblies were produced by depositing the LiCoO2 cathode on the cleaved or polished surfaces of polycrystalline LLT to investigate the effects of the LLT/LiCoO2 interface structure on the electrochemical properties of the assemblies. The microstructures and electrochemical properties of the assemblies were investigated as a function of charge/discharge cycle number. Cyclic voltammetry indicates that anodic and cathodic peaks shift to higher and lower potentials, respectively, with cycle number for the assembly produced with the cleaved LLT, whereas these potential changes are negligibly small for that produced with the mechanically polished LLT. LiCoO2 is formed epitaxially on LLT with the orientation relationships (110)(LLT)// (11 (2) over bar0)(LiCoO2) and [001](LLT)//[(4) over bar 401](LiCoO2) for both assemblies, but amorphous regions are formed at the interface for the assembly produced with polished LLT. The amorphous region is considered to play an important role in the cycle stability of the assembly upon charging/discharging. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4713 / 4722
页数:10
相关论文
共 13 条
[1]   Ionic conductivity of amorphous lithium lanthanum titanate thin film [J].
Furusawa, S ;
Tabuchi, H ;
Sugiyama, T ;
Tao, SW ;
Irvine, JTS .
SOLID STATE IONICS, 2005, 176 (5-6) :553-558
[2]   Influence of composition on the structure and conductivity of the fast ionic conductors La2/3-xLi3xTiO3 (0.03 ≤ x ≤ 0.167) [J].
Ibarra, J ;
Várez, A ;
León, C ;
Santamaría, J ;
Torres-Martínez, LM ;
Sanz, J .
SOLID STATE IONICS, 2000, 134 (3-4) :219-228
[3]   Crystal structure of a lithium ion-conducting perovskite La2/3-xLi3xTiO3 (x=0.05) [J].
Inaguma, Y ;
Katsumata, T ;
Itoh, M ;
Morii, Y .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 166 (01) :67-72
[4]   HIGH IONIC-CONDUCTIVITY IN LITHIUM LANTHANUM TITANATE [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T ;
UCHIDA, T ;
IKUTA, H ;
WAKIHARA, M .
SOLID STATE COMMUNICATIONS, 1993, 86 (10) :689-693
[5]   Structural investigations of migration pathways in lithium ion-conducting La2/3-xLi3xTiO3 perovskites [J].
Inaguma, Yoshiyuki ;
Katsumata, Tetsuhiro ;
Itoh, Mitsuru ;
Morii, Yukio ;
Tsurui, Takao .
SOLID STATE IONICS, 2006, 177 (35-36) :3037-3044
[6]   Preparation of c-axis oriented thin films of LiCoO2 by pulsed laser deposition and their electrochemical properties [J].
Iriyama, Y ;
Inaba, M ;
Abe, T ;
Ogumi, Z .
JOURNAL OF POWER SOURCES, 2001, 94 (02) :175-182
[7]   Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method [J].
Kang, SG ;
Kang, SY ;
Ryu, KS ;
Chang, SH .
SOLID STATE IONICS, 1999, 120 (1-4) :155-161
[8]   ELECTROCHEMICAL AND INSITU X-RAY-DIFFRACTION STUDIES OF LITHIUM INTERCALATION IN LIXCOO2 [J].
REIMERS, JN ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (08) :2091-2097
[9]   Structural changes produced during heating of the fast ion conductor Li0.18La0.61TiO3.: A neutron diffraction study [J].
Sanz, J ;
Varez, A ;
Alonso, JA ;
Fernandez, MT .
JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (4-5) :1157-1164
[10]   Structural stability of LiCoO2 at 400°C [J].
Shao-Horn, Y ;
Hackney, SA ;
Kahaian, AJ ;
Thackeray, MM .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 168 (01) :60-68