Uniqueness and exponential decay of correlations for some two-dimensional spin lattice systems

被引:11
作者
Jiang, MH
Mazel, AE
机构
[1] INT INST EARTHQUAKE PREDICT THEORY & MATH GEOPHYS,MOSCOW 113556,RUSSIA
[2] RUTGERS STATE UNIV,MATH SCI RES CTR,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
lattice spin system; shift of finite type; uniqueness of Gibbs state; polymer expansion;
D O I
10.1007/BF02179793
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a two-dimensional lattice spin system which naturally arises in dynamical systems called coupled map lattice. The configuration space of the spin system is a direct product of mixing subshifts of finite type. The potential is defined on the set of all squares in Z(2) and decays exponentially with the linear size of the square. Via the polymer expansion technique we prove that for sufficiently high temperatures the limit Gibbs distribution is unique and has an exponential decay of correlations.
引用
收藏
页码:797 / 821
页数:25
相关论文
共 17 条
[1]  
BRICMONT J, 1995, HIGH TEMEPRATURE EXP
[2]   Spacetime chaos in coupled map lattices [J].
Bunimovich, L. A. ;
Sinai, Ya G. .
NONLINEARITY, 1988, 1 (04) :491-516
[3]   NONUNIQUENESS OF MEASURES OF MAXIMAL ENTROPY FOR SUBSHIFTS OF FINITE-TYPE [J].
BURTON, R ;
STEIF, JE .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 :213-235
[4]   COMPLETELY ANALYTIC INTERACTIONS WITH INFINITE VALUES [J].
DOBRUSHIN, RL ;
WARSTAT, V .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 84 (03) :335-359
[5]  
DOBRUSHIN RL, 1994, ESI125 PREPR
[6]  
DOBRUSHIN RL, 1988, THEOR MATH PHYS, V74, P221
[7]  
Dobrusin R. L., 1968, THEOR PROBAB APPL, V13, P201
[8]  
Georgii H.-O., 1988, Gibbs Measures and Phase Transitions
[9]  
JIANG M, IN PRESS NONLINEARIT
[10]  
JIANG M, 1995, EQUILIBRIUM MEASURES