We previously demonstrated that the mitochondrial NADH dehydrogenase subunit 2 (ND2) gene was overexpressed in human acute myelogenous leukemia (AML) cells. Since this finding suggested that ND2 gene expression was related to myeloid differentiation, we here investigated the effects of rotenone, a specific NADH dehydrogenase inhibitor, on HL-60 cell growth, differentiation and death. Fifty nM rotenone inhibited the growth of HL-60 cells and caused an increase in the cell population in the G(2) + M phase. In the quantitative comparison of myeloid antigen, the expression of CD13 and CD38 were relatively increased in the rotenone-treated cells. These findings suggest that the inhibition of NADH dehydrogenase changes the cell cycle and induces some specific surface antigens of HL-60 cells. On the other hand, the expression of ND2 gene remained unchanged after the rotenone treatment, suggesting the rotenone-mediated mitochondrial inhibition did not affect the mitochondrial gene expression. Five mu M rotenone strongly inhibited the cellular proliferation. Electron microscopy and an electrophoretic analysis of DNA showed that the majority of the HL-60 cells were induced into typical apoptosis within 24-48 hours. On the basis of this and other studies, we believe that mitochondrial function is directly involved in both cellular differentiation and apoptotic cell death.