Critical properties of the reaction-diffusion model 2A→3A, 2A→0 -: art. no. 036101

被引:85
作者
Carlon, E
Henkel, M
Schollwöck, U
机构
[1] Univ Nancy 1, Phys Mat Lab, CNRS, UMR 7556, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Padua, Dipartimento Fis, INFM, I-35131 Padua, Italy
[3] Univ Munich, Sekt Phys, D-80333 Munich, Germany
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevE.63.036101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The steady-state phase diagram of the one-dimensional reaction-diffusion model 2A --> 3A, 2A-->0 is studied through the non-Hermitian density matrix renormalization group: In the absence of single-particle diffusion the model reduces to the pair-contact process, which has a phase transition in the universality class of directed percolation (DP) and an infinite number of absorbing steady states. When single-particle diffusion is added, the number of absorbing steady states is reduced to 2 and the model no longer shows DP critical behavior. The exponents theta=nu (parallel to)/nu (perpendicular to) and beta/nu (perpendicular to) are calculated numerically. The value of beta/nu (perpendicular to), is close to the value of the parity conserving universality class, in spite of the absence of local conservation laws.
引用
收藏
页码:361011 / 361010
页数:10
相关论文
共 57 条
[1]   REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS [J].
ALCARAZ, FC ;
DROZ, M ;
HENKEL, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1994, 230 (02) :250-302
[2]   Comment on "Solution of classical stochastic one-dimensional many-body systems" - Bares and Mobilia reply [J].
Bares, PA ;
Mobilia, M .
PHYSICAL REVIEW LETTERS, 2000, 85 (04) :893-893
[3]   Solution of classical stochastic one-dimensional many-body systems [J].
Bares, PA ;
Mobilia, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5214-5217
[4]   JAMMING AND KINETICS OF DEPOSITION-EVAPORATION SYSTEMS AND ASSOCIATED QUANTUM SPIN MODELS [J].
BARMA, M ;
GRYNBERG, MD ;
STINCHCOMBE, RB .
PHYSICAL REVIEW LETTERS, 1993, 70 (08) :1033-1036
[5]  
Burlisch R, 1964, NUMER MATH, V6, P413
[6]   The density matrix renormalization group for a quantum spin chain at non-zero temperature [J].
Bursill, RJ ;
Xiang, T ;
Gehring, GA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (40) :L583-L590
[7]   Theory of branching and annihilating random walks [J].
Cardy, J ;
Tauber, UC .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4780-4783
[8]   Field theory of branching and annihilating random walks [J].
Cardy, JL ;
Tauber, UC .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (1-2) :1-56
[9]   Density matrix renormalization group and reaction-diffusion processes [J].
Carlon, E ;
Henkel, M ;
Schollwöck, U .
EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (01) :99-114
[10]  
Chopard B., 1998, Cellular Automata Modeling of Physical Systems