Comparative study among different neural net learning algorithms applied to rainfall time series

被引:48
作者
Chattopadhyay, Surajit [1 ]
Chattopadhyay, Goutami [2 ]
机构
[1] W Bengal Univ Technol, Pailan Coll Management & Technol, Dept Informat Technol, Kolkata 700104, India
[2] Univ Calcutta, Dept Atmospher Sci, Kolkata 700019, W Bengal, India
关键词
multilayer perceptron; backpropagation learning; momentum; conjugate gradient descent; Levenberg-Marquardt; asymptotic regression; monsoon rainfall;
D O I
10.1002/met.71
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The present article reports studies to identify a non-linear methodology to forecast the time series of average summer-monsoon rainfall over India. Three advanced backpropagation neural network learning rules namely, momentum learning, conjugate gradient descent (CGD) learning, and Levenberg-Marquardt (LM) learning, and a statistical methodology in the form of asymptotic regression are implemented for this purpose. Monsoon rainfall data pertaining to the years from 1871 to 1999 are explored. After a thorough skill comparison using statistical procedures the study reports the potential of CGD as a learning algorithm for the backpropagation neural network to predict the said time series. Copyright (C) 2008 Royal Meteorological Society.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 61 条
  • [1] CHATPATTANANAN V, 2006, IEEE C EL INS DIEL P, P253
  • [2] CHATTOPADHYAY G, 2007, SOFT COMPUTING ON LI, DOI DOI 10.1007/S0W00-007-0267-7
  • [3] Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India
    Chattopadhyay, Surajit
    [J]. ACTA GEOPHYSICA, 2007, 55 (03) : 369 - 382
  • [4] DALMI I, 1998, C PUBLICATION NUMBER, V455, P284
  • [5] DelSole T, 2002, J CLIMATE, V15, P3645, DOI [10.1175/1520-0442(2002)015<3645:LPOIMR>2.0.CO
  • [6] 2, 10.1175/1520-0442(2002)015&lt
  • [7] 3645:LPOIMR&gt
  • [8] 2.0.CO
  • [9] 2]
  • [10] ELSNER JB, 1992, B AM METEOROL SOC, V73, P49, DOI 10.1175/1520-0477(1992)073<0049:NPCAN>2.0.CO