Correction of Both NBD1 Energetics and Domain Interface Is Required to Restore ΔF508 CFTR Folding and Function

被引:246
作者
Rabeh, Wael M. [1 ,2 ]
Bossard, Florian [1 ]
Xu, Haijin [1 ]
Okiyoneda, Tsukasa [1 ]
Bagdany, Miklos [1 ]
Mulvihill, Cory M. [1 ]
Du, Kai [1 ]
di Bernardo, Salvatore [1 ]
Liu, Yuhong [3 ]
Konermann, Lars [3 ]
Roldan, Ariel [1 ]
Lukacs, Gergely L. [1 ,2 ]
机构
[1] McGill Univ, Dept Physiol, Montreal, PQ H3E 1Y6, Canada
[2] McGill Univ, GRASP, Montreal, PQ H3E 1Y6, Canada
[3] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada
关键词
TRANSMEMBRANE CONDUCTANCE REGULATOR; NUCLEOTIDE-BINDING DOMAIN; SMALL-MOLECULE CORRECTORS; TRAFFICKING DEFECT; IN-VITRO; MUTATION; IDENTIFICATION; STABILITY; CHAPERONE; DEGRADATION;
D O I
10.1016/j.cell.2011.11.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The folding and misfolding mechanism of multidomain proteins remains poorly understood. Although thermodynamic instability of the first nucleotide-binding domain (NBD1) of Delta F508 CFTR (cystic fibrosis transmembrane conductance regulator) partly accounts for the mutant channel degradation in the endoplasmic reticulum and is considered as a drug target in cystic fibrosis, the link between NBD1 and CFTR misfolding remains unclear. Here, we show that Delta F508 destabilizes NBD1 both thermodynamically and kinetically, but correction of either defect alone is insufficient to restore Delta F508 CFTR biogenesis. Instead, both Delta F508-NBD1 energetic and the NBD1-MSD2 (membrane-spanning domain 2) interface stabilization are required for wild-type-like folding, processing, and transport function, suggesting a synergistic role of NBD1 energetics and topology in CFTR-coupled domain assembly. Identification of distinct structural deficiencies may explain the limited success of Delta F508 CFTR corrector molecules and suggests structure-based combination corrector therapies. These results may serve as a framework for understanding the mechanism of interface mutation in multidomain membrane proteins.
引用
收藏
页码:150 / 163
页数:14
相关论文
共 57 条
[1]   Regulatory Insertion Removal Restores Maturation, Stability and Function of ΔF508 CFTR [J].
Aleksandrov, Andrei A. ;
Kota, Pradeep ;
Aleksandrov, Luba A. ;
He, Lihua ;
Jensen, Tim ;
Cui, Liying ;
Gentzsch, Martina ;
Dokholyan, Nikolay V. ;
Riordan, John R. .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 401 (02) :194-210
[2]   Pharmacological chaperones:: potential treatment for conformational diseases [J].
Bernier, V ;
Lagacé, M ;
Bichet, DG ;
Bouvier, M .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2004, 15 (05) :222-228
[3]   DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS [J].
CHENG, SH ;
GREGORY, RJ ;
MARSHALL, J ;
PAUL, S ;
SOUZA, DW ;
WHITE, GA ;
ORIORDAN, CR ;
SMITH, AE .
CELL, 1990, 63 (04) :827-834
[4]   Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation [J].
Clancy, J. P. ;
Rowe, Steven M. ;
Accurso, Frank J. ;
Aitken, Moira L. ;
Amin, Raouf S. ;
Ashlock, Melissa A. ;
Ballmann, Manfred ;
Boyle, Michael P. ;
Bronsveld, Inez ;
Campbell, Preston W. ;
De Boeck, Kris ;
Donaldson, Scott H. ;
Dorkin, Henry L. ;
Dunitz, Jordan M. ;
Durie, Peter R. ;
Jain, Manu ;
Leonard, Anissa ;
Mccoy, Karen S. ;
Moss, Richard B. ;
Pilewski, Joseph M. ;
Rosenbluth, Daniel B. ;
Rubenstein, Ronald C. ;
Schechter, Michael S. ;
Botfield, Martyn ;
Ordonez, Claudia L. ;
Spencer-Green, George T. ;
Vernillet, Laurent ;
Wisseh, Steve ;
Yen, Karl ;
Konstan, Michael W. .
THORAX, 2012, 67 (01) :12-18
[5]   Domain interdependence in the biosynthetic assembly of CFTR [J].
Cui, Liying ;
Aleksandrov, Luba ;
Chang, Xiu-Bao ;
Hou, Yue-Xian ;
He, Lihua ;
Hegedus, Tamas ;
Gentzsch, Martina ;
Aleksandrov, Andrei ;
Balch, William E. ;
Riordan, John R. .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 365 (04) :981-994
[6]   ALTERED CHLORIDE-ION CHANNEL KINETICS ASSOCIATED WITH THE DELTA-F508 CYSTIC-FIBROSIS MUTATION [J].
DALEMANS, W ;
BARBRY, P ;
CHAMPIGNY, G ;
JALLAT, S ;
DOTT, K ;
DREYER, D ;
CRYSTAL, RG ;
PAVIRANI, A ;
LECOCQ, JP ;
LAZDUNSKI, M .
NATURE, 1991, 354 (6354) :526-528
[7]   PROCESSING OF MUTANT CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR IS TEMPERATURE-SENSITIVE [J].
DENNING, GM ;
ANDERSON, MP ;
AMARA, JF ;
MARSHALL, J ;
SMITH, AE ;
WELSH, MJ .
NATURE, 1992, 358 (6389) :761-764
[8]   The F508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR [J].
Du, K ;
Sharma, M ;
Lukacs, GL .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (01) :17-25
[9]   Cooperative Assembly and Misfolding of CFTR Domains In Vivo [J].
Du, Kai ;
Lukacs, Gergely L. .
MOLECULAR BIOLOGY OF THE CELL, 2009, 20 (07) :1903-1915
[10]   Structure of a Eukaryotic CLC Transporter Defines an Intermediate State in the Transport Cycle [J].
Feng, Liang ;
Campbell, Ernest B. ;
Hsiung, Yichun ;
MacKinnon, Roderick .
SCIENCE, 2010, 330 (6004) :635-641