A model of bidirectional synaptic plasticity: From signaling network to channel conductance

被引:47
作者
Castellani, GC [1 ]
Quinlan, EM
Bersani, F
Cooper, LN
Shouval, HZ
机构
[1] Univ Bologna, CIG, DIMOFIPA, Dept Phys, I-40137 Bologna, Italy
[2] Brown Univ, Inst Brain & Neural Syst, Providence, RI 02912 USA
[3] Brown Univ, Phys & Neurosci Dept, Providence, RI 02912 USA
[4] Univ Maryland, Neurosci & Cognit Sc Program, College Pk, MD 20742 USA
[5] Univ Texas, Sch Med, Dept Neurobiol & Anat, Houston, TX 77030 USA
关键词
D O I
10.1101/lm.80705
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission call be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of sites on the alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit protein GluR1. Bidirectional synaptic plasticity can be induced by different frequencies of presynaptic stimulation, but there is considerable evidence indicating that the key variable is calcium influx through postsynaptic N-methyl-D-aspartate (NMDA) receptors. Here, we present a biophysical model of bidirectional synaptic plasticity based on [Ca2+]-dependent phospho/dephosphorylation of the GluR1 subunit of the AMPA receptor. The primary assumption of the model, for which there is wide experimental support, is that the postsynaptic calcium concentration, and consequent activation of calcium-dependent protein kinases and phosphatases, is the trigger for phosphorylation/dephosphorylation at GluR1 and consequent induction of LTP/LTD. We explore several different mathematical approaches, all of them based on mass-action assumptions. First, we Use a first order approach, in which transition rates are functions of an activator, in this case calcium. Second, we adopt the Michaelis-Menten approach with different assumptions about the signal transduction cascades, ranging from abstract to more detailed and biologically plausible models. Despite the different assumptions made ill each model, ill each case, LTD is induced by a moderate increase in postsynaptic calcium and LTP is induced by high Ca2+ concentration.
引用
收藏
页码:423 / 432
页数:10
相关论文
共 44 条
[1]   Metaplasticity: The plasticity of synaptic plasticity [J].
Abraham, WC ;
Bear, MF .
TRENDS IN NEUROSCIENCES, 1996, 19 (04) :126-130
[2]   LONG-TERM DEPRESSION OF EXCITATORY SYNAPTIC TRANSMISSION AND ITS RELATIONSHIP TO LONG-TERM POTENTIATION [J].
ARTOLA, A ;
SINGER, W .
TRENDS IN NEUROSCIENCES, 1993, 16 (11) :480-487
[3]   Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase [J].
Banke, TG ;
Bowie, D ;
Lee, HK ;
Huganir, RL ;
Schousboe, A ;
Traynelis, SF .
JOURNAL OF NEUROSCIENCE, 2000, 20 (01) :89-102
[4]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[5]   A PHYSIOLOGICAL-BASIS FOR A THEORY OF SYNAPSE MODIFICATION [J].
BEAR, MF ;
COOPER, LN ;
EBNER, FF .
SCIENCE, 1987, 237 (4810) :42-48
[6]   Modulation of AMPA receptor unitary conductance by synaptic activity [J].
Benke, TA ;
Lüthi, A ;
Isaac, JTR ;
Collingridge, GL .
NATURE, 1998, 393 (6687) :793-797
[7]   THEORY FOR THE DEVELOPMENT OF NEURON SELECTIVITY - ORIENTATION SPECIFICITY AND BINOCULAR INTERACTION IN VISUAL-CORTEX [J].
BIENENSTOCK, EL ;
COOPER, LN ;
MUNRO, PW .
JOURNAL OF NEUROSCIENCE, 1982, 2 (01) :32-48
[8]   The role of presynaptic activity in monocular deprivation: Comparison of homosynaptic and heterosynaptic mechanisms [J].
Blais, BS ;
Shouval, HZ ;
Cooper, LN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (03) :1083-1087
[9]   INTRACELLULAR INJECTION OF CA2+ CHELATORS BLOCKS INDUCTION OF LONG-TERM DEPRESSION IN RAT VISUAL-CORTEX [J].
BROCHER, S ;
ARTOLA, A ;
SINGER, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (01) :123-127
[10]   ACTIVITY-DEPENDENT DECREASE IN NMDA RECEPTOR RESPONSES DURING DEVELOPMENT OF THE VISUAL-CORTEX [J].
CARMIGNOTO, G ;
VICINI, S .
SCIENCE, 1992, 258 (5084) :1007-1011