Higher order monotone Bartlett-type adjustment for some multivariate test statistics

被引:35
作者
Kakizawa, Y
机构
[1] Department of Mathematical Science, Faculty of Engineering Science, Osaka University
关键词
asymptotic expansion; Bartlett-type adjustment; Chi-squared distribution;
D O I
10.1093/biomet/83.4.923
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Suppose that the null distribution function of some test statistic S = S-n is expanded in terms of chi(2) distributions. In this paper we provide a method for finding a 'monotone' transformation T(x) such that T(S) has chi-squared distribution to order n(-k). This technique is applied to the special case of Hotelling's T-2-statistic.
引用
收藏
页码:923 / 927
页数:5
相关论文
共 16 条
[1]  
Anderson T., 1984, INTRO MULTIVARIATE S
[2]  
[Anonymous], 1985, MODERN MULTIVARIATE
[3]  
BHATTACHARYA RN, 1985, MULTIVARIATE ANAL, V6, P57
[4]   A GENERAL DISTRIBUTION THEORY FOR A CLASS OF LIKELIHOOD CRITERIA [J].
BOX, GEP .
BIOMETRIKA, 1949, 36 (3-4) :317-346
[5]  
CHANDRA TK, 1985, SANKHYA SER A, V47, P100
[6]  
CHANDRA TK, 1979, SANKHYA A, V41, P22
[7]  
CORDEIRO GM, 1991, BIOMETRIKA, V78, P573
[8]   PERCENTILE APPROXIMATIONS FOR A CLASS OF LIKELIHOOD RATIO CRITERIA [J].
DAVIS, AW .
BIOMETRIKA, 1971, 58 (02) :349-&
[9]  
Fujikoshi Y., 1993, HIROSHIMA MATH J, V23, P557
[10]  
HILL GW, 1968, ANN MATH STAT, V39, P1261