Plasmonic detection of a model analyte in serum by a gold nanorod sensor

被引:280
作者
Marinakos, Stella M.
Chen, Sihai
Chilkoti, Ashutosh
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Ctr Biol Inspired Mat & Mat Syst, Durham, NC 27708 USA
关键词
D O I
10.1021/ac0706527
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We describe the fabrication of a label-free, chip-based biosensor based on the localized surface plasmon resonance (LSPR) of gold nanorods. Gold nanorods were chemisorbed onto a mercaptosilane-modified glass substrate, followed by conjugation of biotin to the nanorods. Streptavidin binding to biotin was monitored by the wavelength shift of the LSPR peak in the UV-vis extinction spectrum of the immobilized gold nanorods due to the change in local refractive index at the gold nanorod surface induced by streptavidin binding. The limit of detection of the sensor is 0.005 mu g/mL (94 pM) in PBS and 1 mu g/mL (19 nM) in serum, and the dynamic range spans 94 pM to 0.19 mu M. The advantages of the nanorod-based sensor over an LSPR sensor that we had previously fabricated from gold nanospheres (Nath, N.; Chilkoti, A. Anal. Chem. 2002, 74, 504-509; J. Fluoresc. 2004, 14, 377-389; Anal. Chem. 2004, 76, 5370-5378) are the significantly lower detection limit and the internal self-reference that the signal of the nanorod sensor provides based on the measurement of peak wavelength shift.
引用
收藏
页码:5278 / 5283
页数:6
相关论文
共 38 条
[1]   An improved synthesis of high-aspect-ratio gold nanorods [J].
Busbee, BD ;
Obare, SO ;
Murphy, CJ .
ADVANCED MATERIALS, 2003, 15 (05) :414-+
[2]   Influence of adsorption conditions on the structure of polyelectrolyte multilayers [J].
Büscher, K ;
Graf, K ;
Ahrens, H ;
Helm, CA .
LANGMUIR, 2002, 18 (09) :3585-3591
[3]   A two-color-change, nanoparticle-based method for DNA detection [J].
Cao, YC ;
Jin, RC ;
Thaxton, S ;
Mirkin, CA .
TALANTA, 2005, 67 (03) :449-455
[4]   Electrostatic self-assembly of silica nanoparticle -: Polyelectrolyte multilayers on polystyrene latex particles [J].
Caruso, F ;
Lichtenfeld, H ;
Giersig, M ;
Möhwald, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (33) :8523-8524
[5]   Sensing capability of the localized surface plasmon resonance of gold nanorods [J].
Chen, Cheng-Dah ;
Cheng, Shu-Fang ;
Chau, Lai-Kwan ;
Wang, C. R. Chris .
BIOSENSORS & BIOELECTRONICS, 2007, 22 (06) :926-932
[6]   Comparison of chemical cleaning methods of glass in preparation for silanization [J].
Cras, JJ ;
Rowe-Taitt, CA ;
Nivens, DA ;
Ligler, FS .
BIOSENSORS & BIOELECTRONICS, 1999, 14 (8-9) :683-688
[7]   Improving the instrumental resolution of sensors based on localized surface plasmon resonance [J].
Dahlin, Andreas B. ;
Tegenfeldt, Jonas O. ;
Hook, Fredrik .
ANALYTICAL CHEMISTRY, 2006, 78 (13) :4416-4423
[8]   Surface plasmon resonance: principles, methods and applications in biomedical sciences [J].
Englebienne, P ;
Van Hoonacker, A ;
Verhas, M .
SPECTROSCOPY-AN INTERNATIONAL JOURNAL, 2003, 17 (2-3) :255-273
[9]   Biosensing based on light absorption of nanoscaled gold and silver particles [J].
Frederix, F ;
Friedt, JM ;
Choi, KH ;
Laureyn, W ;
Campitelli, A ;
Mondelaers, D ;
Maes, G ;
Borghs, G .
ANALYTICAL CHEMISTRY, 2003, 75 (24) :6894-6900
[10]   Nanoscale characterization of gold colloid monolayers: A comparison of four techniques [J].
Grabar, KC ;
Brown, KR ;
Keating, CD ;
Stranick, SJ ;
Tang, SL ;
Natan, MJ .
ANALYTICAL CHEMISTRY, 1997, 69 (03) :471-477