The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins

被引:249
作者
Madson, M
Dunand, C
Li, XM
Verma, R
Vanzin, GF
Calplan, J
Shoue, DA
Carpita, NC
Reiter, WD [1 ]
机构
[1] Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06269 USA
[2] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA
关键词
D O I
10.1105/tpc.009837
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Xyloglucans are the principal glycans that interlace cellulose microfibrils in most flowering plants. The mur3 mutant of Arabidopsis contains a severely altered structure of this polysaccharide because of the absence of a conserved alpha-L-fucosyl(1--> 2)-beta-D-galactosyl side chain and excessive galactosylation at an alternative xylose residue. Despite this severe structural alteration, mur3 plants were phenotypically normal and exhibited tensile strength in their inflorescence stems comparable to that of wild-type plants. The MUR3 gene was cloned positionally and shown to encode a xyloglucan galactosyltrans-ferase that acts specifically on the third xylose residue within the XXXG core structure of xyloglucan. MUR3 belongs to a large family of type-II membrane proteins that is evolutionarily conserved among higher plants. The enzyme shows sequence similarities to the glucuronosyltransferase domain of exostosins, a class of animal glycosyltransferases that catalyze the synthesis of heparan sulfate, a glycosaminoglycan with numerous roles in cell differentiation and development. This finding suggests that components of the plant cell wall and of the animal extracellular matrix are synthesized by evolutionarily related enzymes even though the structures of the corresponding polysaccharides are entirely different from each other.
引用
收藏
页码:1662 / 1670
页数:9
相关论文
共 35 条
[1]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[2]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[3]   The biosynthesis of L-arabinose in plants:: Molecular cloning and characterization of a Golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis [J].
Burget, EG ;
Verma, R ;
Molhoj, M ;
Reiter, WD .
PLANT CELL, 2003, 15 (02) :523-531
[4]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30
[5]   EXTRACTION OF STARCH BY DIMETHYLSULFOXIDE AND QUANTITATION BY ENZYMATIC ASSAY [J].
CARPITA, NC ;
KANABUS, J .
ANALYTICAL BIOCHEMISTRY, 1987, 161 (01) :132-139
[6]   Loosening of plant cell walls by expansins [J].
Cosgrove, DJ .
NATURE, 2000, 407 (6802) :321-326
[7]   Order out of chaos: Assembly of ligand binding sites in heparan sulfate [J].
Esko, JD ;
Selleck, SB .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :435-471
[8]   Biochemical characterization and molecular cloning of an α-1,2-fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in pea [J].
Faik, A ;
Bar-Peled, M ;
DeRocher, AE ;
Zeng, WQ ;
Perrin, RM ;
Wilkerson, C ;
Raikhel, NV ;
Keegstra, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (20) :15082-15089
[9]   An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis [J].
Faik, A ;
Price, NJ ;
Raikhel, NV ;
Keegstra, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (11) :7797-7802
[10]  
FRY SC, 1993, PHYSIOL PLANTARUM, V89, P1