On the hypes and falls in neuroprotection: Targeting the NMDA receptor

被引:96
作者
Villmann, Carmen [1 ]
Becker, Cord-Michael [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Biochem, Emil Fischer Zentrum, D-91054 Erlangen, Germany
关键词
NMDA receptors; excitotoxicity; synaptic plasticity; neuroprotection; drug targets; CNS disorders; neurodegeneration;
D O I
10.1177/1073858406296259
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Activation of the NMDA (N-methyl-D-aspartate) responsive subclass of glutamate receptors is an important mechanism of excitatory synaptic transmission. Moreover, NMDA receptors are widely involved in many forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which are thought to underlie complex tasks, including learning and memory. Dysfunction of these ligand-gated cation channels has been identified as an underlying molecular mechanism in neurological disorders ranging from acute stroke to chronic neurodegeneration in amyotrophic lateral sclerosis. Excessive glutamate levels have been detected following brain trauma and cerebral ischemia, resulting in an unregulated stimulation of NMDA receptors. These conditions are thought to elicit a cascade of excitation-mediated neuronal damage where massive increases in intracellular calcium concentrations finally trigger neuronal damage and apoptosis. Consistent with the hypothesis of NMDA receptors as essential mediators of excitotoxicity, the different functional domains of these ion channels have been identified as potential targets for neuroprotective agents. Following an initial hype on potential NMDA receptor therapeutics, the authors currently see a period of skepticism that, in reverse, appears to neglect the therapeutic potential of this receptor class. This review attempts a reappraisal of this important class of neurotransmitter receptors, with a focus on NMDA receptor heterogeneity, ligand binding domains, and candidate diseases for a potential neuroprotective therapy.
引用
收藏
页码:594 / 615
页数:22
相关论文
共 222 条
[1]  
AIZENMAN E, 1994, DIRECT ALLOSTERIC CO, P95
[2]   Dose escalation study of the NMDA glycine-site antagonist licostinel in acute ischemic stroke [J].
Albers, GW ;
Clark, WM ;
Atkinson, RP ;
Madden, K ;
Data, JL ;
Whitehouse, MJ .
STROKE, 1999, 30 (03) :508-513
[3]   Learning insights transmitted by glutamate [J].
Antzoulatos, EG ;
Byrne, JH .
TRENDS IN NEUROSCIENCES, 2004, 27 (09) :555-560
[4]   Subunit-specific interactions of cyanide with the N-methyl-D-aspartate receptor [J].
Arden, SR ;
Sinor, JD ;
Potthoff, WK ;
Aizenman, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (34) :21505-21511
[5]   Mechanisms for activation and antagonism of an AMPA-Sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core [J].
Armstrong, N ;
Gouaux, E .
NEURON, 2000, 28 (01) :165-181
[6]   Structure of a glutamate-receptor ligand-binding core in complex with kainate [J].
Armstrong, N ;
Sun, Y ;
Chen, GQ ;
Gouaux, E .
NATURE, 1998, 395 (6705) :913-917
[7]   N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke [J].
Arvidsson, A ;
Kokaia, Z ;
Lindvall, O .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2001, 14 (01) :10-18
[8]   Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions [J].
Ayalon, G ;
Stern-Bach, Y .
NEURON, 2001, 31 (01) :103-113
[9]   Activation of NR1/NR2B NMDA receptors [J].
Banke, TG ;
Traynelis, SF .
NATURE NEUROSCIENCE, 2003, 6 (02) :144-152
[10]   NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII [J].
Barria, A ;
Malinow, R .
NEURON, 2005, 48 (02) :289-301