Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth

被引:45
作者
Watarai, M
Andrews, HL
Isberg, RR
机构
[1] Tufts Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02111 USA
[2] Tufts Univ, Sch Med, Dept Mol Biol & Microbiol, Boston, MA 02111 USA
关键词
D O I
10.1046/j.1365-2958.2001.02193.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Legionella pneumophila grows in human alveolar macrophages and resides within a phagosome that initially lacks proteins associated with the endocytic pathway. Required for targeting to this unique location is the Dot/Icm complex, which is highly similar to conjugative DNA transfer apparatuses. Here, we show that exposure to three distinct inducing conditions resulted in the formation of a fibrous structure on the bacterial cell surface that contained the DotH and DotO proteins. These conditions included: (i) incubation for 2 h with mouse bone marrow-derived macrophages; (ii) incubation for 2 h in macrophage-conditioned media; or (iii) replication of bacteria for 22 h within macrophages. Introduction of bacteria harbouring the surface-exposed DotH and DotO onto a fresh monolayer resulted in loss of the surface localization of DotH and DotO shortly after uptake. Treatments that resulted in the production of the fibrous structure enhanced the rate at which the bacteria were internalized, but there was no corresponding increase in the efficiency of intracellular growth compared with bacteria that had been cultured in broth using conditions that resulted in maximal intracellular growth. These data indicate that the surface-exposed DotH and DotO on L. pneumophila may act either just before lysis from the macrophage or at the earliest stages of infection, transiently relocating in a fibrous structure on the bacterial cell surface.
引用
收藏
页码:313 / 329
页数:17
相关论文
共 47 条
[1]   Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway [J].
Andrews, HL ;
Vogel, JP ;
Isberg, RR .
INFECTION AND IMMUNITY, 1998, 66 (03) :950-958
[2]   2 DISTINCT DEFECTS IN INTRACELLULAR GROWTH COMPLEMENTED BY A SINGLE GENETIC-LOCUS IN LEGIONELLA-PNEUMOPHILA [J].
BERGER, KH ;
ISBERG, RR .
MOLECULAR MICROBIOLOGY, 1993, 7 (01) :7-19
[3]   Coinoculation with Hartmannella vermiformis enhances replicative Legionella pneumophila lung infection in a murine model of Legionnaires' disease [J].
Brieland, J ;
McClain, M ;
Heath, L ;
Chrisp, C ;
Huffnagle, G ;
LeGendre, M ;
Hurley, M ;
Fantone, J ;
Engleberg, C .
INFECTION AND IMMUNITY, 1996, 64 (07) :2449-2456
[4]   Expression of Legionella pneumophila virulence traits in response to growth conditions [J].
Byrne, B ;
Swanson, MS .
INFECTION AND IMMUNITY, 1998, 66 (07) :3029-3034
[5]  
CHEN JW, 1988, J BIOL CHEM, V263, P8754
[6]  
CIANCIOTTO N, 1989, MOL BIOL MED, V6, P409
[7]   Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila [J].
Cirillo, JD ;
Cirillo, SLG ;
Yan, L ;
Bermudez, LE ;
Falkow, S ;
Tompkins, LS .
INFECTION AND IMMUNITY, 1999, 67 (09) :4427-4434
[8]   GROWTH OF LEGIONELLA-PNEUMOPHILA IN ACANTHAMOEBA-CASTELLANII ENHANCES INVASION [J].
CIRILLO, JD ;
FALKOW, S ;
TOMPKINS, LS .
INFECTION AND IMMUNITY, 1994, 62 (08) :3254-3261
[9]   CHARACTERIZATION OF THE MYCOBACTERIUM-TUBERCULOSIS PHAGOSOME AND EVIDENCE THAT PHAGOSOMAL MATURATION IS INHIBITED [J].
CLEMENS, DL ;
HORWITZ, MA .
JOURNAL OF EXPERIMENTAL MEDICINE, 1995, 181 (01) :257-270
[10]   Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model [J].
Edelstein, PH ;
Edelstein, MAC ;
Higa, F ;
Falkow, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) :8190-8195