Holder continuity for spatial and path processes via spectral analysis

被引:3
作者
Blount, D [1 ]
Kouritzin, MA
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
关键词
Holder continuity; stochastic partial differential equations; superprocesses; path process; Fourier analysis;
D O I
10.1007/PL00008773
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For v(d theta), a sigma -finite Borel measure on R-d, we consider L-2(v(d theta))-valued stochastic processes Y(t) with the property that Y(t) = y(t, (.)) where y(t, theta) = integral (l)(0) e(-lambda(theta)(t-s)) dm (s, theta) and m (t, theta) is a continuous martingale with quadratic variation [m](t) = integral (t)(0) g(s, theta) ds. We prove timewise Holder continuity and maximal inequalities for Y and use these results to obtain Hilbert space regularity for a class of superprocesses as well as a class of stochastic evolutions of the form dX = AXdt + GdW with W a cylindrical Brownian motion. Maximal inequalities and Holder continuity results are also proven for the path process Y-l (tau) (=) over circle Y(tau t boolean AND t).
引用
收藏
页码:589 / 603
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 1993, ECOLE DETE PROBABILI
[2]  
Billingsley P., 1986, PROBABILITY MEASURE
[3]  
Blount D, 2000, ANN PROBAB, V28, P104
[4]  
BLOUNT D, 2000, C P CANADIAN MATH SO, V26, P25
[5]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[6]  
Dawson D.A., 1972, MATH BIOSCI, V154, P187
[7]  
ETHIER S., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658
[8]  
KALLIANPUR G, 1995, IMS LECT NOTES MONOG, V26
[9]  
Kotelenez P., 1987, Stochastics, V21, P345, DOI 10.1080/17442508708833463
[10]   A LAW OF THE ITERATED LOGARITHM FOR STOCHASTIC-PROCESSES DEFINED BY DIFFERENTIAL-EQUATIONS WITH A SMALL-PARAMETER [J].
KOURITZIN, MA ;
HEUNIS, AJ .
ANNALS OF PROBABILITY, 1994, 22 (02) :659-679