On thermolysis of the methoxy (MeO-TMD), tert-butoxy ((BuO)-Bu-t-TMD), and hydroxy (HO-TMD) derivatives of 3,3,4,4-tetramethyl-1,2-dioxetane (TMD) in the presence of dG and calf-thymus DNA, the guanine is oxidized considerably more efficiently than the parent TMD. The same trend in the oxidative reactivity is observed for the photolysis of the corresponding oxy-substituted ketones versus acetone. The oxidative reactivity order in the dioxetane thermolysis, as well as in the ketone photolysis, parallels the ability of the excited ketones to release radicals (determined by spin trapping with DMPO and EPR spectroscopy) upon ct cleavage (Norrish-type-I reaction). In the presence of molecular oxygen, the carbon-centered radicals are scavenged to produce peroxyl radicals, which are proposed as the reactive species in the oxidation of the guanine in dG and calf-thymus DNA.