Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures

被引:72
作者
D'Aguanno, G
Centini, M
Scalora, M
Sibilia, C
Bloemer, MJ
Bowden, CM
Haus, JW
Bertolotti, M
机构
[1] Univ Roma La Sapienza, INFM, I-00161 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Energet, I-00161 Rome, Italy
[3] USA, Aviat & Missile Command, RD&E Ctr, Weapons Sci Directorate, Redstone Arsenal, AL 35898 USA
[4] Time Domain Corp, Huntsville, AL 35806 USA
[5] Univ Dayton, Electoopt Program, Dayton, OH 45469 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevE.63.036610
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have analyzed the notions of group velocity V-g and energy velocity V-E for light pulses propagating inside one-dimensional photonic band gap structures of finite length. We find that the two velocities are related through the transmission coefficient t as V-E = \t\V-2(g). It follows that V-E = V-g only when the transmittance is unity (\t\(2) = 1). This is due to the effective dispersive properties of finite layered structures, and it allows us to better understand a wide range of phenomena, such as superluminal pulse propagation. In fact, placing the requirement that the energy velocity should remain subluminal leads directly to the condition V-g less than or equal to c/\t\(2). This condition places a large upper limit on the allowed group velocity of the tunneling pulse at frequencies of vanishingly small transmission.
引用
收藏
页数:5
相关论文
共 18 条
[1]   Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures [J].
Bendickson, JM ;
Dowling, JP ;
Scalora, M .
PHYSICAL REVIEW E, 1996, 53 (04) :4107-4121
[2]  
BOHM D, 1989, QUANTUM THEORY, P97
[3]   DEVELOPMENT AND APPLICATIONS OF MATERIALS EXHIBITING PHOTONIC BAND-GAPS - INTRODUCTION [J].
BOWDEN, CM ;
DOWLING, JP ;
EVERITT, HO .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (02) :280-280
[4]  
Brillouin L., 1960, WAVE PROPAGATION GRO
[5]   Dispersive properties of finite, one-dimensional photonic band gap structures: Applications to nonlinear quadratic interactions [J].
Centini, M ;
Sibilia, C ;
Scalora, M ;
D'Aguanno, G ;
Bertolotti, M ;
Bloemer, MJ ;
Bowden, CM ;
Nefedov, I .
PHYSICAL REVIEW E, 1999, 60 (04) :4891-4898
[6]   Tunnelling times and superluminality [J].
Chiao, RY ;
Steinberg, AM .
PROGRESS IN OPTICS, VOL. 37, 1997, 37 :345-405
[7]   LINEAR PULSE-PROPAGATION IN AN ABSORBING MEDIUM [J].
CHU, S ;
WONG, S .
PHYSICAL REVIEW LETTERS, 1982, 48 (11) :738-741
[8]   POSSIBILITIES FOR THE OBSERVATION OF GAP SOLITONS IN WAVE-GUIDE GEOMETRIES [J].
DESTERKE, CM ;
SIPE, JE .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1989, 6 (09) :1722-1725
[9]   PROPAGATION OF A GAUSSIAN LIGHT PULSE THROUGH AN ANOMALOUS DISPERSION MEDIUM [J].
GARRETT, CGB ;
MCCUMBER, DE .
PHYSICAL REVIEW A, 1970, 1 (02) :305-&
[10]   TUNNELING TIMES - A CRITICAL-REVIEW [J].
HAUGE, EH ;
STOVNENG, JA .
REVIEWS OF MODERN PHYSICS, 1989, 61 (04) :917-936