Evaluation of HOAPS-3 Ocean Surface Freshwater Flux Components

被引:63
作者
Andersson, Axel [1 ,4 ]
Klepp, Christian [4 ]
Fennig, Karsten [2 ]
Bakan, Stephan [1 ]
Grassl, Hartmut [4 ]
Schulz, Joerg [3 ]
机构
[1] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[2] Met Off, Exeter, Devon, England
[3] Deutsch Wetterdienst, Satellite Applicat Facil Climate Monitoring, Offenbach, Germany
[4] Meteorol Inst Univ, Hamburg, Germany
关键词
LATENT-HEAT FLUX; AIR-SEA FLUXES; GLOBAL PRECIPITATION; NORTH-ATLANTIC; WIND-SPEED; BULK PARAMETERIZATION; MICROWAVE RADIOMETERS; SATELLITE; REANALYSIS; PRODUCTS;
D O I
10.1175/2010JAMC2341.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Today, latent heat flux and precipitation over the global ocean surface can be determined from microwave satellite data as a basis for estimating the related fields of the ocean surface freshwater flux. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) is the only generally available satellite-based dataset with consistently derived global fields of both evaporation and precipitation and hence of freshwater flux for the period 1987-2005. This paper presents a comparison of the evaporation E, precipitation P, and the resulting freshwater flux E - P in HOAPS with recently available reference datasets from reanalysis and other satellite observation projects as well as in situ ship measurements. In addition, the humidity and wind speed input parameters for the evaporation are examined to identify sources for differences between the datasets. Results show that the general climatological patterns are reproduced by all datasets. Global mean time series often agree within about 10% of the individual products, while locally larger deviations may be found for all parameters. HOAPS often agrees better with the other satellite-derived datasets than with the in situ or the reanalysis data. The agreement usually improves in regions of good in situ sampling statistics. The biggest deviations of the evaporation parameter result from differences in the near-surface humidity estimates. The precipitation datasets exhibit large differences in highly variable regimes with the largest absolute differences in the ITCZ and the largest relative biases in the extratropical storm-track regions. The resulting freshwater flux estimates exhibit distinct differences in terms of global averages as well as regional biases. In comparison with long-term mean global river runoff data, the ocean surface freshwater balance is not closed by any of the compared fields. The datasets exhibit a positive bias in E - P of 0.2 - 0.5 mm day(-1), which is on the order of 10% of the evaporation and precipitation estimates.
引用
收藏
页码:379 / 398
页数:20
相关论文
共 84 条
[1]  
Adler RF, 2001, B AM METEOROL SOC, V82, P1377, DOI 10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO
[2]  
2
[3]  
Adler RF, 2003, J HYDROMETEOROL, V4, P1147, DOI 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO
[4]  
2
[5]   Anticipated changes in the global atmospheric water cycle INTRODUCTION [J].
Allan, Richard P. ;
Liepert, Beate G. .
ENVIRONMENTAL RESEARCH LETTERS, 2010, 5 (02)
[6]  
Andersson A., 2010, EARTH SYST SCI DATA, V3, P143, DOI DOI 10.5194/ESSDD-3-143-2010
[7]   Satellite derived precipitation and freshwater flux variability and its dependence on the North Atlantic Oscillation [J].
Andersson, Axel ;
Bakan, Stephan ;
Grassl, Hartmut .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2010, 62 (04) :453-468
[8]  
[Anonymous], HAMBURG OCEAN ATMOSP
[9]  
[Anonymous], 2008, MULTIDECADE GLOBAL F
[10]  
Bentamy A, 2003, J CLIMATE, V16, P637, DOI 10.1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO