Nanoparticles in catalysis

被引:183
作者
Johnson, BFG [1 ]
机构
[1] Univ Chem Labs, Cambridge CB2 1EW, England
关键词
nanocatalysts; bimetallic catalysts; mesoporous support; heterogenised-homogenous catalysts; hydrogenation;
D O I
10.1023/B:TOCA.0000003086.83434.b6
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this article, we report studies of two new forms of highly active supported catalysts. First, those derived from supported carbonylate clusters-nanocatalysts and second, those produced from the heterogenization of known chiral homogeneous systems. The utilization of established cluster compounds of precisely known composition and structure have proved invaluable in the preparation of mixed metal nanoparticles of well-defined composition. The attachment of these nanoparticles to the inner walls of mesoporous silica has led to the development of highly active and effective catalysts for a series of hydrogenation reactions, emphasizing the enhanced reactivity of these metal systems as a consequence of their size and of the low coordination numbers of the metal atoms involved. These attributes combined with the relative ease of characterization of both the active sites and their location has led to a detailed examination of the role of these nanosystems in a new approach to clean technology. In an alternative strategy, the use of heterogenized homogeneous chiral catalysts based on the ferrocenyl moiety and diamino ligands and linked to the inner surface of mesoporous materials either by a direct chemical bond or by an ionic interaction has also been explored. These catalysts have been shown to be highly effective in the enantioselective synthesis of organic compounds. Significantly, we have found that the mesopore (usually MCM-41) imposes spatial restrictions arising from the concavity of the inner surface and leads to greatly enhanced enantioselective (ee) performance.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 26 条
[1]   New insights into the structure of supported bimetallic nanocluster catalysts prepared from carbonylated precursors: a combined density functional theory and EXAFS study [J].
Bromley, ST ;
Sankar, G ;
Catlow, CRA ;
Maschmeyer, T ;
Johnson, BFG ;
Thomas, JM .
CHEMICAL PHYSICS LETTERS, 2001, 340 (5-6) :524-530
[2]  
Hermans S, 2001, ANGEW CHEM INT EDIT, V40, P1211
[3]   Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors [J].
Hills, CW ;
Nashner, MS ;
Frenkel, AI ;
Shapley, JR ;
Nuzzo, RG .
LANGMUIR, 1999, 15 (03) :690-700
[4]  
ICHIKAWA M, 1992, ADV CATAL, V38, P282
[5]   New catalysts for clean technology [J].
Johnson, BFG ;
Raynor, SA ;
Brown, DB ;
Shephard, DS ;
Mashmeyer, T ;
Thomas, JM ;
Hermans, S ;
Raja, R ;
Sankar, G .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2002, 182 (01) :89-97
[6]   Superior performance of a chiral catalyst confined within mesoporous silica [J].
Johnson, BFG ;
Raynor, SA ;
Shephard, DS ;
Mashmeyer, T ;
Thomas, JM ;
Sankar, G ;
Bromley, S ;
Oldroyd, R ;
Gladden, L ;
Mantle, MD .
CHEMICAL COMMUNICATIONS, 1999, (13) :1167-1168
[7]  
JOHNSON BFG, 1999, J CHEM SOC CHEM COMM, P1571
[8]   Solid-state NMR studies of MCM-41 supported with a highly catalytically active cluster [J].
Jones, MD ;
Duer, MJ ;
Hermans, S ;
Khimyak, YZ ;
Johnson, BFG ;
Thomas, JM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (24) :4726-4729
[9]   Bimetallic catalyst particle nanostructure. Evolution from molecular cluster precursors [J].
Nashner, MS ;
Somerville, DM ;
Lane, PD ;
Adler, DL ;
Shapley, JR ;
Nuzzo, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (51) :12964-12974
[10]   Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)(16) [J].
Nashner, MS ;
Frenkel, AI ;
Adler, DL ;
Shapley, JR ;
Nuzzo, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (33) :7760-7771