A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage

被引:206
作者
Beheshti, Elham [1 ]
Nojeh, Alireza [1 ]
Servati, Peyman [1 ]
机构
[1] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CARBON NANOTUBES; MOLECULAR-HYDROGEN; PSEUDOPOTENTIALS; APPROXIMATION; PHYSISORPTION;
D O I
10.1016/j.carbon.2010.12.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen adsorption and storage on calcium-decorated, boron-doped graphene was explored using density functional theory simulations based on local density approximation and generalized gradient approximation methods. The clustering problem for calcium-decorated graphene was investigated and it was shown that individual calcium atoms are not stable on pure graphene, and formation of aggregates is favorable. Substitutional boron doping can eliminate the clustering problem for Ca atoms on graphene. Up to four hydrogen molecules can stably bind to a Ca atom on a graphene plane with substitutional doping of a single boron atom. The average binding energy of similar to 0.4 eV/H-2 is in the range that permits H-2 recycling at ambient conditions. Two binding mechanisms contribute to the adsorption of H-2 molecules: polarization of the H-2 molecule under the electric field produced by the Ca-graphene dipole, and hybridization of the 3d orbitals of Ca with the sigma orbitals of H-2. Double-sided Ca-decorated graphene doped with individual boron atoms of 12 at.% can theoretically reach a gravimetric capacity of 8.38 wt.% hydrogen. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1561 / 1567
页数:7
相关论文
共 46 条
[1]   Hydrogen storage of calcium atoms adsorbed on graphene: First-principles plane wave calculations [J].
Ataca, C. ;
Akturk, E. ;
Ciraci, S. .
PHYSICAL REVIEW B, 2009, 79 (04)
[2]   Optimum conditions for adsorptive storage [J].
Bhatia, SK ;
Myers, AL .
LANGMUIR, 2006, 22 (04) :1688-1700
[3]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[4]   Hydrogen storage in graphite nanofibers [J].
Chambers, A ;
Park, C ;
Baker, RTK ;
Rodriguez, NM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (22) :4253-4256
[5]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[6]   Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes [J].
Dag, S ;
Ozturk, Y ;
Ciraci, S ;
Yildirim, T .
PHYSICAL REVIEW B, 2005, 72 (15)
[7]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[8]   Transition-metal-ethylene complexes as high-capacity hydrogen-storage media [J].
Durgun, E. ;
Ciraci, S. ;
Zhou, W. ;
Yildirim, T. .
PHYSICAL REVIEW LETTERS, 2006, 97 (22)
[9]   Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage [J].
Durgun, E. ;
Ciraci, S. ;
Yildirim, T. .
PHYSICAL REVIEW B, 2008, 77 (08)
[10]  
Frisch M., 2004, GAUSSIAN 03 REVISION, DOI DOI 10.1016/J.MOLSTRUC.2017.03.014