The salicylic acid loop in plant defense

被引:474
作者
Shah, J
机构
[1] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA
[2] Kansas State Univ, Mol Cellular & Dev Biol Program, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S1369-5266(03)00058-X
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salicylic acid is an important signal molecule in plant defense. In the past two years, significant progress has been made in understanding the mechanism of salicylic-acid biosynthesis and signaling in plants. A pathway similar to that found in some bacteria synthesizes salicylic acid from chorismate via isochorismate. Salicylic-acid signaling is mediated by at least two mechanisms, one requiring the NON-EXPRESSOR OF PR1 (NPR1) gene and a second that is independent of NPR1. Feedback loops involving salicylic acid modulate upstream signals. These feedback loops may provide a point for integrating developmental, environmental and other defense-associated signals, and thus fine-tune the defense responses of plants.
引用
收藏
页码:365 / 371
页数:7
相关论文
共 59 条
[1]   Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression [J].
Anderson, MD ;
Chen, ZX ;
Klessig, DF .
PHYTOCHEMISTRY, 1998, 47 (04) :555-566
[2]   Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance [J].
Cao, H ;
Li, X ;
Dong, XN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6531-6536
[3]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[4]   Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis [J].
Chern, MS ;
Fitzgerald, HA ;
Yadav, RC ;
Canlas, PE ;
Dong, XN ;
Ronald, PC .
PLANT JOURNAL, 2001, 27 (02) :101-113
[5]   Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1-dependent in cpr5 [J].
Clarke, JD ;
Aarts, N ;
Feys, BJ ;
Dong, XN ;
Parker, JE .
PLANT JOURNAL, 2001, 26 (04) :409-420
[6]   Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis [J].
Clarke, JD ;
Volko, SM ;
Ledford, H ;
Ausubel, FM ;
Dong, XN .
PLANT CELL, 2000, 12 (11) :2175-2190
[7]   Involvement of the Arabidopsis α-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death [J].
de Leon, IP ;
Sanz, A ;
Hamberg, M ;
Castresana, C .
PLANT JOURNAL, 2002, 29 (01) :61-72
[8]   A CENTRAL ROLE OF SALICYLIC-ACID IN PLANT-DISEASE RESISTANCE [J].
DELANEY, TP ;
UKNES, S ;
VERNOOIJ, B ;
FRIEDRICH, L ;
WEYMANN, K ;
NEGROTTO, D ;
GAFFNEY, T ;
GUTRELLA, M ;
KESSMANN, H ;
WARD, E ;
RYALS, J .
SCIENCE, 1994, 266 (5188) :1247-1250
[9]   ARABIDOPSIS SIGNAL-TRANSDUCTION MUTANT DEFECTIVE IN CHEMICALLY AND BIOLOGICALLY INDUCED DISEASE RESISTANCE [J].
DELANEY, TP ;
FRIEDRICH, L ;
RYALS, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6602-6606
[10]   Salicylic acid and disease resistance in plants [J].
Dempsey, DA ;
Shah, J ;
Klessig, DF .
CRITICAL REVIEWS IN PLANT SCIENCES, 1999, 18 (04) :547-575