Improvements to Platt's SMO algorithm for SVM classifier design

被引:1223
作者
Keerthi, SS [1 ]
Shevade, SK
Bhattacharyya, C
Murthy, KRK
机构
[1] Natl Univ Singapore, Dept Mech & Prod Engn, Singapore 119260, Singapore
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
关键词
D O I
10.1162/089976601300014493
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article points out an important source of inefficiency in Platt's sequential minimal optimization (SMO) algorithm that is caused by the use of a single threshold value. Using clues from the KKT conditions for the dual problem, two threshold parameters are employed to derive modifications of SMO. These modified algorithms perform significantly faster than the original SMO on all benchmark data sets tried.
引用
收藏
页码:637 / 649
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 1990, SUPPORT VECTOR LEARN
[2]  
BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504
[3]  
Burges C. J., 1998, DATA MINING KNOWLEDG, V3
[4]  
FRIES TT, 1998, SUPPORT VECTOR NETWO
[5]  
Joachims T., 1998, ADV KERNEL METHODS S
[6]  
KEERTHI SS, 1999, CD9914 NAT U SING DE
[7]  
KEERTHI SS, 1999, TRISL9903 IND I SCI
[8]  
MANGASARIAN OL, 1998, SUCCESSIVE OVERRELAX
[9]  
PLATT J, 1999, ADV NEURAL INFORMATI
[10]  
SHEVADE SK, 1999, CD9916 NAT U SING