Simulated annealing versus metropolis for a TSP instance

被引:47
作者
Meer, Klaus [1 ]
机构
[1] Syddansk Univ Odense, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
关键词
analysis of algorithms; simulated annealing; metropolis algorithm; 2-Opt heuristic for TSP;
D O I
10.1016/j.ipl.2007.06.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a recent paper [I. Wegener, Simulated Annealing beats Metropolis in combinatorial optimization, in: L. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi, M. Yung (Eds.), Proc. ICALP 2005, in: LNCS, vol. 3580, 2005, pp. 589-601] Wegener gave a first natural example of a combinatorial optimization problem where for certain instances a Simulated Annealing algorithm provably performs better than the Metropolis algorithm for any fixed temperature. Wegener's example deals with a special instance of the Minimum Spanning Tree problem. In this short note we show that Wegener's technique as well can be used to prove a similar result for another important problem in combinatorial optimization, namely the Traveling Salesman Problem. The main task is to construct a suitable TSP instance for which SA outperforms MA when using the well known 2-Opt local search heuristic. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 219
页数:4
相关论文
共 4 条
[1]  
Jerrum M., 1996, Approximation Algorithms for NP-Hard Problems, chapter The Markov Chain Monte Carlo Method: An Approach To Approximate Counting And Integration, P482
[2]  
Johnson, 2003, LOCAL SEARCH COMBINA, P215, DOI DOI 10.1515/9780691187563
[3]  
MOTWANI R, 1995, RANDOMIZED ALGRITHMS
[4]  
Wegener I, 2005, LECT NOTES COMPUT SC, V3580, P589