Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora

被引:149
作者
Suau, A [1 ]
Rochet, V [1 ]
Sghir, A [1 ]
Gramet, G [1 ]
Brewaeys, S [1 ]
Sutren, M [1 ]
Rigottier-Gois, L [1 ]
Doré, J [1 ]
机构
[1] INRA, UEPSD, F-78352 Jouy En Josas, France
关键词
rRNA; oligonucleotide probe; in situ hybridization; dot blot hybridization; Fusobacterium prausnitzii; human fecal flora;
D O I
10.1078/0723-2020-00015
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The human gut microflora plays a key role in nutrition and health. It has been extensively studied by conventional culture techniques. However these methods are difficult, time consuming and their results not always consistent. Furthermore microscopic counts indicate that only 20 to 40% of the total flora can be cultivated. Among the predominant species of the human gut, Fusobacterium prausnitzii was reported either as one of the most frequent and numerous species or was seldom retrieved. We designed and validated a specific rRNA-targeted oligonucleotide probe, called S-*-Fprau-0645-a-A-23, to accurately detect and quantify E prausnitzii and relatives within the human fecal microflora. The target group accounted for 5.3 +/- 3% of total bacterial 16S rRNA using dot blot hybridization (10 human fecal samples) and 16.5 +/- 7% of cells stained with Dapi using in situ hybridization (10 other human fecal samples). A specific morphology seemed to be typical and dominant: two cells forming an asymmetrical double droplet. This work showed that F. prausnitzii and phylogenetically related species represent a dominant group within the human fecal flora.
引用
收藏
页码:139 / 145
页数:7
相关论文
共 29 条
[1]   The oligonucleotide probe database [J].
Alm, EW ;
Oerther, DB ;
Larsen, N ;
Stahl, DA ;
Raskin, L .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (10) :3557-3559
[2]   FLUORESCENT-OLIGONUCLEOTIDE PROBING OF WHOLE CELLS FOR DETERMINATIVE, PHYLOGENETIC, AND ENVIRONMENTAL-STUDIES IN MICROBIOLOGY [J].
AMANN, RI ;
KRUMHOLZ, L ;
STAHL, DA .
JOURNAL OF BACTERIOLOGY, 1990, 172 (02) :762-770
[3]   Phylogenetic relationships of butyrate-producing bacteria from the human gut [J].
Barcenilla, A ;
Pryde, SE ;
Martin, JC ;
Duncan, SH ;
Stewart, CS ;
Henderson, C ;
Flint, HJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (04) :1654-1661
[4]  
COLLINSON M, 1994, ORGANIZATION, V1, P44
[5]   Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations [J].
Dore, J ;
Sghir, A ;
Hannequart-Gramet, G ;
Corthier, G ;
Pochart, P .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1998, 21 (01) :65-71
[6]  
DUCLUZEAU R, 1988, MICROBIAL ECOLOGY IN, P7
[7]  
Finegold S.M., 1983, HUMAN INTESTINAL MIC, P3
[8]  
Franks AH, 1998, APPL ENVIRON MICROB, V64, P3336
[9]   DIETARY MODULATION OF THE HUMAN COLONIC MICROBIOTA - INTRODUCING THE CONCEPT OF PREBIOTICS [J].
GIBSON, GR ;
ROBERFROID, MB .
JOURNAL OF NUTRITION, 1995, 125 (06) :1401-1412
[10]   Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis [J].
Godon, JJ ;
Zumstein, E ;
Dabert, P ;
Habouzit, F ;
Moletta, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (07) :2802-2813