共 44 条
Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors
被引:296
作者:
Xia, Hui
[1
]
Wang, Yu
[3
]
Lin, Jianyi
[3
]
Lu, Li
[2
]
机构:
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore
[3] ICES, Singapore 627833, Singapore
来源:
NANOSCALE RESEARCH LETTERS
|
2012年
/
7卷
关键词:
MANGANESE OXIDE NANOFLOWERS;
ELECTRODE MATERIALS;
NANOTUBE COMPOSITE;
PERFORMANCE;
ALPHA-MNO2;
FABRICATION;
ARRAYS;
DEPOSITION;
MECHANISM;
NANORODS;
D O I:
10.1186/1556-276X-7-33
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2 center dot 0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m(2)/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.
引用
收藏
页码:1 / 10
页数:10
相关论文