HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation

被引:173
作者
Antonchuk, J
Sauvageau, G
Humphries, RK
机构
[1] British Columbia Canc Agcy, Terry Fox Lab, Vancouver, BC V5Z 1L3, Canada
[2] Clin Res Inst Montreal, Montreal, PQ H2W 1R7, Canada
[3] Univ British Columbia, Dept Med, Vancouver, BC, Canada
关键词
D O I
10.1016/S0301-472X(01)00681-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. Hox transcription factors have emerged as important regulators of hematopoiesis. In particular, we have shown that overexpression of HOXB4 in mouse bone marrow can greatly enhance the level of hematopoietic stem cell HSC regeneration achieved at late times (> 4 months) posttransplantation. The objective of this study was to resolve if HOXB4 increases the rate and/or duration of HSC regeneration, and also to see if this enhancement was associated with impaired production of end cells or would lead to competitive reconstitution of all compartments. Methods. Retroviral vectors were generated with the GFP reporter gene +/- HOXB4 to enable the isolation and direct tracking of transduced cells in culture or following transplantation. Stem cell recovery was measured by limit dilution assay for long-term competitive repopulating cells (CRU). Results. HOXB4-overexpressing cells have enhanced growth in vitro, as demonstrated by their rapid dominance in mixed cultures and their shortened population doubling time. Furthermore, HOXB4-transduced cells have a marked competitive repopulating advantage in vivo in both primitive and mature compartments. CRU recovery in HOXB4 recipients was extremely rapid, reaching 25% of normal by 14 days posttransplant or some 80-fold greater than control transplant recipients, and attaining normal numbers by 12 weeks. Mice transplanted with even higher numbers of HOXB4-transduced CRU regenerated up to but not beyond the normal CRU levels. Conclusion. HOXB4 is a potent enhancer of primitive hematopoietic cell growth, likely by increasing self-renewal probability but without impairing homeostatic control of HSC population size or the rate of production and maintenance of mature end cells. (C) 2001 International Society for Experimental Hematology. Published by Elsevier Science Inc.
引用
收藏
页码:1125 / 1134
页数:10
相关论文
共 38 条
[1]   Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo [J].
Bjornson, CRR ;
Rietze, RL ;
Reynolds, BA ;
Magli, MC ;
Vescovi, AL .
SCIENCE, 1999, 283 (5401) :534-537
[2]   Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo [J].
Bunting, KD ;
Zhou, S ;
Lu, TH ;
Sorrentino, BP .
BLOOD, 2000, 96 (03) :902-909
[3]   Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice [J].
Bunting, KD ;
Galipeau, J ;
Topham, D ;
Benaim, E ;
Sorrentino, BP .
BLOOD, 1998, 92 (07) :2269-2279
[4]   Development and aging of primitive hematopoietic stem cells in BALB cBy mice [J].
Chen, JC ;
Astle, CM ;
Harrison, DE .
EXPERIMENTAL HEMATOLOGY, 1999, 27 (05) :928-935
[5]   Genetic regulation of primitive hematopoietic stem cell senescence [J].
Chen, JC ;
Astle, CM ;
Harrison, DE .
EXPERIMENTAL HEMATOLOGY, 2000, 28 (04) :442-450
[6]   Hematopoietic stem cell quiescence maintained by p21cip1/waf1 [J].
Cheng, T ;
Rodrigues, N ;
Shen, HM ;
Yang, YG ;
Dombkowski, D ;
Sykes, M ;
Scadden, DT .
SCIENCE, 2000, 287 (5459) :1804-1808
[7]   The role of apoptosis in the regulation of hematopoietic stem cells:: Overexpression of BCL-2 increases both their number and repopulation potential [J].
Domen, J ;
Cheshier, SH ;
Weissman, IL .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 191 (02) :253-263
[8]   Muscle regeneration by bone marrow derived myogenic progenitors [J].
Ferrari, G ;
Cusella-De Angelis, G ;
Coletta, M ;
Paolucci, E ;
Stornaiuolo, A ;
Cossu, G ;
Mavilio, F .
SCIENCE, 1998, 279 (5356) :1528-1530
[9]   Dystrophin expression in the mdx mouse restored by stem cell transplantation [J].
Gussoni, E ;
Soneoka, Y ;
Strickland, CD ;
Buzney, EA ;
Khan, MK ;
Flint, AF ;
Kunkel, LM ;
Mulligan, RC .
NATURE, 1999, 401 (6751) :390-394
[10]   EFFECTS OF TRANSPLANTATION ON THE PRIMITIVE IMMUNOHEMATOPOIETIC STEM-CELL [J].
HARRISON, DE ;
STONE, M ;
ASTLE, CM .
JOURNAL OF EXPERIMENTAL MEDICINE, 1990, 172 (02) :431-437