Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel

被引:61
作者
Tong, YH
Brandt, GS
Li, M
Shapovalov, G
Slimko, E
Karschin, A
Dougherty, DA
Lester, HA [1 ]
机构
[1] CALTECH 156 29, Div Biol, Pasadena, CA 91125 USA
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] Univ Wurzburg, Dept Physiol, D-97070 Wurzburg, Germany
基金
英国惠康基金;
关键词
unnatural amino acids; ion channel; Kir2.1; clathrin; endocytosis;
D O I
10.1085/jgp.117.2.103
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Tyrosine side chains participate in several distinct signaling pathways, including phosphorylation and membrane trafficking. A nonsense suppression procedure was used to incorporate a caged tyrosine residue in Place of the natural tyrosine at position 242 of the inward rectifier channel Kir2.1 er;pressed in Xenopus oocytes. When tyrosine kinases were active, flash decaging led both to decreased K+ currents and also to substantial (15-26%) decreases in capacitance, implying net membrane endocytosis. A dominant negative dynamin mutant completely blocked the decaging-induced endocytosis and partially blocked the decaging-induced K+ channel inhibition. Thus, decaging of a single tyrosine residue in a single species of membrane protein leads to massive clathrin-mediated endocytosis; in fact, membrane area equivalent to many clathrin-coated vesicles is withdrawn from the oocyte surface for each Kir2.1 channel inhibited. Oocyte membrane proteins were also labeled with the thiol-reactive fluorophore tetramethylrhodamine-5-maleimide, and manipulations that decreased capacitance also decreased surface membrane fluorescence, confirming the net endocytosis. In single-channel studies, tyrosine kinase activation decreased the membrane density of active Kir2.1 channels per patch but did not change channel conductance or open probability, in agreement with the hypothesis that tyrosine phosphorylation results in endocytosis of Kir2.1 channels. Despite the Kir2.1 inhibition and endocytosis stimulated by tyrosine kinase activation, neither Western blotting nor P-32 labeling produced evidence for direct tyrosine phosphorylation of Kir2.1. Therefore, it is likely that tyrosine phosphorylation affects Kir2.1 function indirectly, via interactions between clathrin adaptor proteins and a tyrosine-based sorting motif on Kir2.1 that is revealed by decaging the tyrosine side chain. These interactions inhibit a fraction of the Kir2.1 channels, possibly via direct occlusion of the conduction pathway, and also lead to endocytosis, which further decreases Kir2.1 currents. These data establish that side chain decaging can provide valuable time-resolved data about intracellular signaling systems.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 62 条
[1]   Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes [J].
Boll, W ;
Ohno, H ;
Zhou, SY ;
Rapoport, I ;
Cantley, LC ;
Bonifacino, JS ;
Kirchhausen, T .
EMBO JOURNAL, 1996, 15 (21) :5789-5795
[2]   PROTEIN-KINASE-C REGULATION OF CARDIAC CALCIUM CHANNELS EXPRESSED IN XENOPUS OOCYTES [J].
BOURINET, E ;
FOURNIER, F ;
LORY, P ;
CHARNET, P ;
NARGEOT, J .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1992, 421 (2-3) :247-255
[3]   NEUROTROPHIN RECEPTORS - A WINDOW INTO NEURONAL DIFFERENTIATION [J].
CHAO, MV .
NEURON, 1992, 9 (04) :583-593
[4]  
CHEN YH, 1994, J BIOL CHEM, V269, P27372
[5]   Light-activated proteins [J].
Curley, K ;
Lawrence, DS .
CURRENT OPINION IN CHEMICAL BIOLOGY, 1999, 3 (01) :84-88
[6]   Caged regulators of signaling pathways [J].
Curley, K ;
Lawrence, DS .
PHARMACOLOGY & THERAPEUTICS, 1999, 82 (2-3) :347-354
[7]   INDUCTION OF MUTANT DYNAMIN SPECIFICALLY BLOCKS ENDOCYTIC COATED VESICLE FORMATION [J].
DAMKE, H ;
BABA, T ;
WARNOCK, DE ;
SCHMID, SL .
JOURNAL OF CELL BIOLOGY, 1994, 127 (04) :915-934
[8]   A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation [J].
Dikic, I ;
Tokiwa, G ;
Lev, S ;
Courtneidge, SA ;
Schlessinger, J .
NATURE, 1996, 383 (6600) :547-550
[9]   Site-specific, photochemical proteolysis applied to ion channels in vivo [J].
England, PM ;
Lester, HA ;
Davidson, N ;
Dougherty, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :11025-11030
[10]   Number of subunits comprising the epithelial sodium channel [J].
Eskandari, S ;
Snyder, PM ;
Kreman, M ;
Zampighi, GA ;
Welsh, MJ ;
Wright, EM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (38) :27281-27286