Multiscaling in passive scalar advection as stochastic shape dynamics

被引:21
作者
Gat, O [1 ]
Zeitak, R
机构
[1] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[2] Ecole Normale Super, Phys Stat Lab, F-75231 Paris 05, France
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 05期
关键词
D O I
10.1103/PhysRevE.57.5511
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Kraichnan rapid advection model [Phys. Fluids 11, 945 (1968); Phys Rev. Lett. 72, 1016 (1994)] is recast as the stochastic dynamics of tracer trajectories. This framework replaces the random fields with a small set of stochastic ordinary differential equations. Multiscaling of correlation functions arises naturally as a consequence of the geometry described by the evolution of N trajectories. Scaling exponents and scaling structures are interpreted as excited states of the evolution operator. The trajectories become nearly deterministic in high dimensions allowing for perturbation theory in this limit. We calculate perturbatively the anomalous exponent of the third-and fourth-order correlation functions. The fourth-order result agrees with previous calculations.
引用
收藏
页码:5511 / 5519
页数:9
相关论文
共 14 条
[1]  
BERNARD D, CONDMT9706035
[2]   Instanton for random advection [J].
Chertkov, M .
PHYSICAL REVIEW E, 1997, 55 (03) :2722-2735
[3]   NORMAL AND ANOMALOUS SCALING OF THE 4TH-ORDER CORRELATION-FUNCTION OF A RANDOMLY ADVECTED PASSIVE SCALAR [J].
CHERTKOV, M ;
FALKOVICH, G ;
KOLOKOLOV, I ;
LEBEDEV, V .
PHYSICAL REVIEW E, 1995, 52 (05) :4924-4941
[4]   Distribution of domain sizes in the zero temperature Glauber dynamics of the one-dimensional Potts model [J].
Derrida, B ;
Zeitak, R .
PHYSICAL REVIEW E, 1996, 54 (03) :2513-2525
[5]   PATH-INTEGRAL METHODS FOR TURBULENT-DIFFUSION [J].
DRUMMOND, IT .
JOURNAL OF FLUID MECHANICS, 1982, 123 (OCT) :59-68
[6]  
FRISCH U, UNPUB
[7]  
Frisch U., 1995, TURBULENCE, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[8]   Perturbative and nonperturbative analysis of the third-order zero modes in the Kraichnan model for turbulent advection [J].
Gat, O ;
Lvov, VS ;
Procaccia, I .
PHYSICAL REVIEW E, 1997, 56 (01) :406-416
[9]  
GAT O, UNPUB
[10]  
GAWEDZKI K, 1995, PHYS REV LETT, V75, P3834, DOI 10.1103/PhysRevLett.75.3834