Monotonicity and Implementability

被引:39
作者
Ashlagi, Itai [1 ]
Braverman, Mark [2 ]
Hassidim, Avinatan [3 ]
Monderer, Dov [4 ]
机构
[1] Harvard Univ, Sch Business, Boston, MA 02163 USA
[2] Microsoft Res, Cambridge, MA 02142 USA
[3] MIT, Cambridge, MA 02142 USA
[4] Technion Israel Inst Technol, IL-32000 Haifa, Israel
关键词
Monotone; cyclic monotonicity; implementable; dominant strategies; DESIGN;
D O I
10.3982/ECTA8882
中图分类号
F [经济];
学科分类号
02 ;
摘要
Consider an environment with a finite number of alternatives, and agents with private values and quasilinear utility functions. A domain of valuation functions for an agent is a monotonicity domain if every finite-valued monotone randomized allocation rule defined on it is implementable in dominant strategies. We fully characterize the set of all monotonicity domains.
引用
收藏
页码:1749 / 1772
页数:24
相关论文
共 23 条
[1]  
ARCHER A, 2008, ACM C EL COMM CHIC I
[2]   Frugal Path Mechanisms [J].
Archer, Aaron ;
Tardos, Eva .
ACM TRANSACTIONS ON ALGORITHMS, 2007, 3 (01)
[3]  
ASHLAGI I, 2010, ECONOMETRICA S, V78
[4]  
BERGER A, 2009, S ALG GAM THEOR PAPH
[5]   Weak monotonicity characterizes deterministic dominant-strategy implementation [J].
Bikhchandani, Sushil ;
Chatterji, Shurojit ;
Lavi, Ron ;
Mu'alem, Ahuva ;
Nisan, Noam ;
Sen, Arunava .
ECONOMETRICA, 2006, 74 (04) :1109-1132
[6]   Competitive auctions [J].
Goldberg, AV ;
Hartline, JD ;
Karlin, AR ;
Saks, M ;
Wright, A .
GAMES AND ECONOMIC BEHAVIOR, 2006, 55 (02) :242-269
[7]  
GUI H, 2004, DOMINANT STRAT UNPUB
[8]   Efficient design with interdependent valuations [J].
Jehiel, P ;
Moldovanu, B .
ECONOMETRICA, 2001, 69 (05) :1237-1259
[9]  
Jehiel P, 1996, AM ECON REV, V86, P814
[10]   Convex potentials with an application to mechanism design [J].
Krishna, V ;
Maenner, E .
ECONOMETRICA, 2001, 69 (04) :1113-1119