Regulatory functions of serine-46-phospholylated HPr in Lactococcus lactis

被引:50
作者
Monedero, V
Kuipers, OP
Jamet, E
Deutscher, J [1 ]
机构
[1] INRA, Lab Genet Microorganismes, CNRS, URA 1925, F-78850 Thiverval Grignon, France
[2] INRA, F-78352 Jouy En Josas, France
[3] NIZO Food Res, NL-6710 BA Ede, Netherlands
关键词
D O I
10.1128/JB.183.11.3391-3398.2001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In most low-G+C gram-positive bacteria, the phosphoryl carrier protein HPr of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) becomes phosphorylated at Ser-46. This ATP-dependent reaction is catalyzed by the bifunctional HPr kinase/P-Ser-HPr phosphatase. We found that serine-phosphorylated HPr (P-Ser-HPr) of Lactococcus lactis participates not only in carbon catabolite repression of an operon encoding a beta -glucoside-specific EII and a 6-P-beta -glucosidase but also in inducer exclusion of the non-PTS carbohydrates maltose and ribose. In a wild-type strain, transport of these non-PTS carbohydrates is strongly inhibited by the presence of glucose, whereas in a ptsH1 mutant, in which Ser-46 of HPr is replaced with an alanine, glucose had lost its inhibitory effect. In vitro experiments carried out with L. lactis vesicles had suggested that P-Ser-HPr is also implicated in inducer expulsion of nonmetabolizable homologues of PTS sugars, such as methyl beta -D-thiogalactoside (TMG) and 2 deoxy-D-glucose (2-DG). In vivo experiments with the ptsH1 mutant established that P-Ser-HPr is not necessary for inducer expulsion. Glucose-activated 2-DG expulsion occurred at similar rates in wild-type and ptsH1 mutant strains, whereas TMG expulsion was slowed in the ptsH1 mutant. It therefore seems that P-Ser-HPr is not essential for inducer expulsion but that in certain cases it can play an indirect role in this regulatory process.
引用
收藏
页码:3391 / 3398
页数:8
相关论文
共 47 条
[1]   BGLR PROTEIN, WHICH BELONGS TO THE BGLG FAMILY OF TRANSCRIPTIONAL ANTITERMINATORS, IS INVOLVED IN BETA-GLUCOSIDE UTILIZATION IN LACTOCOCCUS-LACTIS [J].
BARDOWSKI, J ;
EHRLICH, SD ;
CHOPIN, A .
JOURNAL OF BACTERIOLOGY, 1994, 176 (18) :5681-5685
[2]   HIGH-EFFICIENCY GENE INACTIVATION AND REPLACEMENT SYSTEM FOR GRAM-POSITIVE BACTERIA [J].
BISWAS, I ;
GRUSS, A ;
EHRLICH, SD ;
MAGUIN, E .
JOURNAL OF BACTERIOLOGY, 1993, 175 (11) :3628-3635
[3]   Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome [J].
Bolotin, A ;
Mauger, S ;
Malarme, K ;
Ehrlich, SD ;
Sorokin, A .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 1999, 76 (1-4) :27-76
[4]  
BOLOTIN A, IN PRESS GENOME RES
[5]   The HPr(Ser) kinase of Streptococcus salivarius:: Purification, properties, and cloning of the hprK gene [J].
Brochu, D ;
Vadeboncoeur, C .
JOURNAL OF BACTERIOLOGY, 1999, 181 (03) :709-717
[6]   Cloning and sequencing of two Enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue [J].
Charrier, V ;
Buckley, E ;
Parsonage, D ;
Galinier, A ;
Darbon, E ;
Jaquinod, M ;
Forest, E ;
Deutscher, J ;
Claiborne, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (22) :14166-14174
[7]   LOSS OF PROTEIN KINASE-CATALYZED PHOSPHORYLATION OF HPR, A PHOSPHOCARRIER PROTEIN OF THE PHOSPHOTRANSFERASE SYSTEM, BY MUTATION OF THE PTSH GENE CONFERS CATABOLITE REPRESSION RESISTANCE TO SEVERAL CATABOLIC GENES OF BACILLUS-SUBTILIS [J].
DEUTSCHER, J ;
REIZER, J ;
FISCHER, C ;
GALINIER, A ;
SAIER, MH ;
STEINMETZ, M .
JOURNAL OF BACTERIOLOGY, 1994, 176 (11) :3336-3344
[8]   STREPTOCOCCAL PHOSPHOENOLPYRUVATE SUGAR PHOSPHOTRANSFERASE SYSTEM - AMINO-ACID-SEQUENCE AND SITE OF ATP-DEPENDENT PHOSPHORYLATION OF HPR [J].
DEUTSCHER, J ;
PEVEC, B ;
BEYREUTHER, K ;
KILTZ, HH ;
HENGSTENBERG, W .
BIOCHEMISTRY, 1986, 25 (21) :6543-6551
[9]   ATP-DEPENDENT PROTEIN KINASE-CATALYZED PHOSPHORYLATION OF A SERYL RESIDUE IN HPR, A PHOSPHATE CARRIER PROTEIN OF THE PHOSPHOTRANSFERASE SYSTEM IN STREPTOCOCCUS-PYOGENES [J].
DEUTSCHER, J ;
SAIER, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (22) :6790-6794
[10]   PROTEIN KINASE-DEPENDENT HPR/CCPA INTERACTION LINKS GLYCOLYTIC ACTIVITY TO CARBON CATABOLITE REPRESSION IN GRAM-POSITIVE BACTERIA [J].
DEUTSCHER, J ;
KUSTER, E ;
BERGSTEDT, U ;
CHARRIER, V ;
HILLEN, W .
MOLECULAR MICROBIOLOGY, 1995, 15 (06) :1049-1053