Nitric oxide and mitochondrial biogenesis: A key to long-term regulation of cellular metabolism

被引:108
作者
Clement, E
Nisoli, E
机构
[1] DIBIT H San Raffaele Sci Inst, Stem Cell Res Inst, I-20132 Milan, Italy
[2] E Medea Sci Inst, I-23842 Bosisio Parini, Italy
[3] Univ Milan, Dept Preclin Sci, I-20157 Milan, Italy
[4] Ist Auxol Italiano, I-20149 Milan, Italy
来源
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY | 2005年 / 142卷 / 02期
关键词
mitochondria; nitric oxide; cyclic GMP; mitochondrial biogenesis; thermogenesis; respiration; gene transcription; hypoxia; metabolism;
D O I
10.1016/j.cbpb.2005.04.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria, the site of oxidative energy metabolism in eukariotic cells, are a highly organised structure endowed with different enzymes and reactions localized in discrete membranes and aqueous compartments. Mitochondrial function is regulated in complex ways by several agonists and environmental conditions, through activation of specific transcription factors and signalling pathways. A key player in this scenario is nitric oxide (NO). Its binding to cytochrome c oxidase in the mitochondrial respiratory chain, which is reversible and in competition with oxygen, plays a role in acute oxygen sensing and in the cell response to hypoxia. Evidence of the last two years showed that NO has also long-term effects, leading to biogenesis of functionally active mitochondria, that complement its oxygen sensing function. Mitochondrial biogenesis is triggered by NO through activation of guanylate cyclase and generation of cyclic GMP, and yields formation of functionally active mitochondria. Thus, the combined action of NO at its two known intracellular receptors, cytochrome c oxidase and guanylate cyclase, appears to play a role in coupling energy generation with energy demand. This may explain why dysregulation of the NO signalling pathway is often associated with the pathogenesis of metabolic disorders. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:102 / 110
页数:9
相关论文
共 95 条
[1]   Plasticity of skeletal muscle mitochondria in response to contractile activity [J].
Adhihetty, PJ ;
Irrcher, I ;
Joseph, AM ;
Ljubicic, V ;
Hood, DA .
EXPERIMENTAL PHYSIOLOGY, 2003, 88 (01) :99-107
[2]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[3]   Origins of mitochondria and hydrogenosomes [J].
Andersson, SGE ;
Kurland, CG .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (05) :535-541
[4]  
ATTARDI G, 1988, ANNU REV CELL BIOL, V4, P289, DOI 10.1146/annurev.cb.04.110188.001445
[5]   Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism -: A novel regulatory mechanism altered in obesity [J].
Bach, D ;
Pich, S ;
Soriano, FX ;
Vega, N ;
Baumgartner, B ;
Oriola, J ;
Daugaard, JR ;
Lloberas, J ;
Camps, M ;
Zierath, JR ;
Rabasa-Lhoret, R ;
Wallberg-Henriksson, H ;
Laville, M ;
Palacín, M ;
Vidal, H ;
Rivera, F ;
Brand, M ;
Zorzano, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (19) :17190-17197
[6]   ESTIMATION OF SURFACE-AREA FROM VERTICAL SECTIONS [J].
BADDELEY, AJ ;
GUNDERSEN, HJG ;
CRUZORIVE, LM .
JOURNAL OF MICROSCOPY-OXFORD, 1986, 142 :259-276
[7]   Nitric oxide synthases and cardiac muscle - Autocrine and paracrine influences [J].
Balligand, JL ;
Cannon, PJ .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1997, 17 (10) :1846-1858
[8]  
Bereiter-Hahn J., 1990, International Review of Cytology, V122, P1, DOI 10.1016/S0074-7696(08)61205-X
[9]   DYNAMICS OF MITOCHONDRIA IN LIVING CELLS - SHAPE CHANGES, DISLOCATIONS, FUSION, AND FISSION OF MITOCHONDRIA [J].
BEREITERHAHN, J ;
VOTH, M .
MICROSCOPY RESEARCH AND TECHNIQUE, 1994, 27 (03) :198-219
[10]   Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis [J].
Bergeron, R ;
Ren, JM ;
Cadman, KS ;
Moore, IK ;
Perret, P ;
Pypaert, M ;
Young, LH ;
Semenkovich, CF ;
Shulman, GI .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2001, 281 (06) :E1340-E1346