Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana

被引:49
作者
Eriksen, Niels T. [1 ]
Nielsen, Thomas M. [1 ]
Iversen, Niels [1 ]
机构
[1] Aalborg Univ, Dept Biotechnol Chem & Environm Engn, DK-9000 Aalborg, Denmark
关键词
batch culture; biohydrogen; glucose; oxygen; thermotoga neapolitana;
D O I
10.1007/s10529-007-9520-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We have tested the hypothesis (Van Ooteghem et al. Appl Biochem Biotechnol 2002 98-100: 177-189) that microaerobic metabolism may increase the yield of H-2 from the thermophilic bacterium Thermotoga neapolitana. In anaerobic conditions, T. neapolitana converted glucose into acetic acid and lactic acid and yielded 2.4 +/- 0.3 mol H-2 mol(-1) glucose. The bacterium tolerated low O-2 partial pressures but the H-2 yield was not improved under microaerobic conditions. Our results indicate that T. neapolitana only produces H-2 by anaerobic metabolism, and that the yield of H-2 can be maximised by minimising the production of lactic acid.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 19 条
[1]   A NEW SULFUR-REDUCING, EXTREMELY THERMOPHILIC EUBACTERIUM FROM A SUBMARINE THERMAL VENT [J].
BELKIN, S ;
WIRSEN, CO ;
JANNASCH, HW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 51 (06) :1180-1185
[2]   Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes [J].
Fabiano, B ;
Perego, P .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (02) :149-156
[3]   Membrane-associated redox activities in Thermotoga neapolitana [J].
Käslin, SA ;
Childers, SE ;
Noll, KM .
ARCHIVES OF MICROBIOLOGY, 1998, 170 (04) :297-303
[4]   Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge [J].
Kotay, Shireen Meher ;
Das, Debabrata .
BIORESOURCE TECHNOLOGY, 2007, 98 (06) :1183-1190
[5]   Fermentative hydrogen production at ambient temperature [J].
Lin, CY ;
Chang, RC .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (07) :715-720
[6]   Enhancement of hydrogen production from glucose by nitrogen gas sparging [J].
Mizuno, O ;
Dinsdale, R ;
Hawkes, FR ;
Hawkes, DL ;
Noike, T .
BIORESOURCE TECHNOLOGY, 2000, 73 (01) :59-65
[7]   Biological production of hydrogen from glucose by natural anaerobic microflora [J].
Monmoto, M ;
Atsuka, M ;
Atif, AAY ;
Ngan, MA ;
Fakhru'l-Razi, A ;
Iyuke, SE ;
Bakir, AM .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (07) :709-713
[8]   Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima [J].
Nelson, KE ;
Clayton, RA ;
Gill, SR ;
Gwinn, ML ;
Dodson, RJ ;
Haft, DH ;
Hickey, EK ;
Peterson, LD ;
Nelson, WC ;
Ketchum, KA ;
McDonald, L ;
Utterback, TR ;
Malek, JA ;
Linher, KD ;
Garrett, MM ;
Stewart, AM ;
Cotton, MD ;
Pratt, MS ;
Phillips, CA ;
Richardson, D ;
Heidelberg, J ;
Sutton, GG ;
Fleischmann, RD ;
Eisen, JA ;
White, O ;
Salzberg, SL ;
Smith, HO ;
Venter, JC ;
Fraser, CM .
NATURE, 1999, 399 (6734) :323-329
[9]   Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp Y19 [J].
Oh, YK ;
Seol, EH ;
Kim, JR ;
Park, S .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (12) :1353-1359
[10]  
Ooteghem V.S., 2005, Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria, Patent No. [US 6,942,998, 6942998]