Obesity-related overexpression of fatty-acid synthase gene in adipose tissue involves sterol regulatory element-binding protein transcription factors

被引:112
作者
Boizard, M
Le Liepvre, X
Lemarchand, P
Foufelle, F
Ferré, P
Dugail, I
机构
[1] Inst Biomed Cordeliers, INSERM, U465, F-75006 Paris, France
[2] Hop Necker Enfants Malad, INSERM, Fac Med, U25, F-75730 Paris 15, France
关键词
D O I
10.1074/jbc.273.44.29164
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elevated lipogenesis is a key determinant of exaggerated fat deposition in adipose tissue of obese Zucker rats. We previously delineated a region in the fatty-acid synthase promoter, which was responsible for obesity-related overexpression of the fatty-acid synthase (FAS) gene, by negatively regulating the activity of the downstream promoter in lean but not obese rat fat cells, The present study aimed to identify the transcriptional factors acting on this target region. First, functional analysis of mutated FAS promoter constructs in transiently transfected lean and obese rat adipocytes showed that the activity of the obesity-related region relied on the presence of a transcriptionally inactive sterol regulatory element at -150, which counteracted activation through the downstream F-box, Adenovirus-mediated overexpression of a dominant negative form of adipocyte determination and differentiation factor 1 (ADD1) was used to neutralize endogenous ADD1/sterol regulatory element-binding protein (SREBP) transcriptional activity in fat cells, by producing inactive dimers unable to bind target DNA, With this system, we observed that overexpression of FAS in obese rat adipocytes was ADD1/SREBP-dependent. SREBP isoforms expression was assessed in lean and obese rat fat cells and showed no differences in the level of ADD1/SREBP1 mRNA, In addition, equivalent amounts of immunoreactive ADD1/SREBP1 were found in nuclear extracts from lean and obese rat fat cells. In contrast, immunoreactive SREBP2, which was very low in nuclear extracts from lean rats, was induced in obese rat fat cells, Finally, using in vitro binding studies, we showed that SREBP2 was able to displace ADD1/SREBP1 binding from the sterol regulatory element (SRE) site. Thus, we propose a mechanism for obesity-related overexpression of FAS gene in rat adipocyte, ADD1/SREBP1-activated transcription proceeding from the E-box motif is counterbalanced by a negative SRE site acting by limiting the availability of ADD1/SREBP1 in normal fat cells. The negative effect of this site is abolished in obese rat adipocyte nuclei where SREBP2 is induced and can substitute for ADD1/SREBP1 binding to the inactive SRE, These results provide evidence for the implication of SREBPs in the dysregulation of adipocyte metabolism characteristic of the obese state.
引用
收藏
页码:29164 / 29171
页数:8
相关论文
共 42 条
  • [1] BAZIN R, 1982, J LIPID RES, V23, P839
  • [2] STEROL REGULATION OF FATTY-ACID SYNTHASE PROMOTER - COORDINATE FEEDBACK-REGULATION OF 2 MAJOR LIPID PATHWAYS
    BENNETT, MK
    LOPEZ, JM
    SANCHEZ, HB
    OSBORNE, TF
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (43) : 25578 - 25583
  • [3] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [4] BRAY G, 1998, PHYSIOL REV, V59, P719
  • [5] BRIQUETLAUGIER V, 1994, AM J PHYSIOL, V267, pF439
  • [6] The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
    Brown, MS
    Goldstein, JL
    [J]. CELL, 1997, 89 (03) : 331 - 340
  • [7] CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
  • [8] Emtage PCR, 1998, J IMMUNOL, V160, P2531
  • [9] Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination and differentiation factor 1- and sterol regulatory element-binding protein-responsive gene
    Ericsson, J
    Jackson, SM
    Kim, JB
    Spiegelman, BM
    Edwards, PA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (11) : 7298 - 7305
  • [10] FOUFELLE F, 1992, J BIOL CHEM, V267, P20543