The cAMP pathway regulates both transcription and activity of the paired homeobox transcription factor Phox2a required for development of neural crest-derived and central nervous system-derived catecholaminergic neurons

被引:17
作者
Chen, SG [1 ]
Ji, M [1 ]
Paris, M [1 ]
Hullinger, RL [1 ]
Andrisani, OM [1 ]
机构
[1] Purdue Univ, Dept Basic Med Sci, W Lafayette, IN 47907 USA
关键词
D O I
10.1074/jbc.M503537200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pluripotent neural crest (NC) cells differentiate to diverse lineages, including the neuronal, sympathoadrenal lineage. In primary NC cultures, bone morphogenetic protein 2 ( BMP2) requires moderate activation of cAMP signaling for induction of the sympathoadrenal lineage. However, the mechanism by which cAMP signaling synergizes with BMP2 to induce the sympathodrenal lineage is unknown. Herein, we demonstrate that moderate activation of cAMP signaling induces both transcription and activity of proneural transcription factor Phox2a. In NC cultures inhibition of cAMP-response element-binding protein (CREB)-mediated transcription by expression of dominant-negative CREB suppresses Phox2a transcription and sympathoadrenal lineage development. Interestingly, the constitutively active CREBDIEDML, despite inducing Phox2a transcription, is insufficient for sympathoadrenal lineage development, requiring activation of the cAMP pathway. Because CREBDIEDML mediates cAMP-dependent transcription without requiring activation by the cAMP-dependent protein kinase A ( PKA), these results identify PKA activation as necessary in sympathoadrenal lineage development. Treatment of NC cultures with the PKA inhibitor H89 or 1-10 nM okadaic acid (OA), a serine/threonine PP2A-like phosphatase inhibitor, suppresses sympathoadrenal lineage development. Likewise, OA treatment of the CNS-derived catecholaminergic CAD cell line inhibits cAMP-mediated neuronal differentiation. Specifically, OA inhibits cAMP-mediated Phox2a dephosphorylation, cAMP-dependent Phox2a DNA binding in vitro, and cAMP- and Phox2a-dependent dopamine-beta-hydroxylaseluciferase reporter expression. Together, these results support cAMP- dependent Phox2a dephosphorylation is required for its activation. We conclude that moderate activation of cAMP signaling has dual inputs in catecholaminergic, sympathoadrenal lineage development; that is, regulation of both Phox2a transcription and activity. These results provide the first mechanistic understanding of how moderate activation of the cAMP pathway in synergy with BMP2 promotes sympathoadrenal lineage development.
引用
收藏
页码:41025 / 41036
页数:12
相关论文
共 63 条
[1]   The paired-like homeodomain protein, arix, mediates protein kinase A-stimulated dopamine β-hydroxylase gene transcription through its phosphorylation status [J].
Adachi, M ;
Lewis, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (25) :22915-22924
[2]   A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos [J].
Ahn, S ;
Olive, M ;
Aggarwal, S ;
Krylov, D ;
Ginty, DD ;
Vinson, C .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (02) :967-977
[3]  
ANDERSON DJ, 1991, J NEUROSCI, V11, P3507
[4]   CREB-mediated transcriptional control [J].
Andrisani, OM .
CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION, 1999, 9 (01) :19-32
[5]   3 SEQUENCE-SPECIFIC DNA-PROTEIN COMPLEXES ARE FORMED WITH THE SAME PROMOTER ELEMENT ESSENTIAL FOR EXPRESSION OF THE RAT SOMATOSTATIN GENE [J].
ANDRISANI, OM ;
POT, DA ;
ZHU, Z ;
DIXON, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (05) :1947-1956
[6]   A FAMILY OF TRANSCRIPTIONAL ADAPTER PROTEINS TARGETED BY THE E1A ONCOPROTEIN [J].
ARANY, Z ;
NEWSOME, D ;
OLDREAD, E ;
LIVINGSTON, DM ;
ECKNER, R .
NATURE, 1995, 374 (6517) :81-84
[7]  
BENJANIRUT C, 2005, 64 ANN M SOC DEV BIO
[8]   Phosphorylation status of the SCR homeodomain determines its functional activity:: essential role for protein phosphatase 2A,B′ [J].
Berry, M ;
Gehring, W .
EMBO JOURNAL, 2000, 19 (12) :2946-2957
[9]   Adenosine signaling promotes neuronal, catecholaminergic differentiation of primary neural crest cells and CNS-derived CAD cells [J].
Bilodeau, ML ;
Ji, M ;
Paris, M ;
Andrisani, OM .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2005, 29 (03) :394-404
[10]  
Bilodeau ML, 2001, IN VITRO CELL DEV-AN, V37, P185